
DRAFT
Preamble

Last modified date: 2023-05-07

This document is an auto-generated version of the Draft SVP64 Specification available at

https://libre-soc.org/openpower/sv

for which the source code is available at

https://git.libre-soc.org/?p=libreriscv.git;a=tree;f=openpower;hb=HEAD

This PDF may be created with "make pdf" from the following file:

https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/Makefile;hb=HEAD

by executing the following commands:

git clone https://git.libre-soc.org/git/libreriscv.git libresoc
cd libresoc/libresoc/openpower
make pdf

Simple-V Cray-style Vectors have been developed by the Libre-SOC Team, sponsored by the NLnet Foundation
and NGI POINTER under EU Grants 871528 and 957073.

Simple-V is in DRAFT Status and will be submitted publicly (non-confidentially) through the OPF ISA WG
"External Submissions" Process. Funding from NLnet, through their Privacy and Enhanced Trust Programme,
requires full transparency.

As this document is under continuous rapid revision please check frequently at:

https://ftp.libre-soc.org/simple_v_spec.pdf

Contacts

For questions, comments, and clarification, please contact the following:

• Libre-SOC ISA Dev Mailing List - libre-soc-isa@lists.libre-soc.org
• Luke Kenneth Casson Leighton - Libre-SOC team lead and Red Semiconductor Ltd Director - lkcl@lkcl.net
• David Calderwood - Red Semiconductor Ltd Director - djac@calderwoodhan.com
• Toshaan Bharvani - OpenPOWER Foundation Technical Chair, VanTosh Director - toshaan@vantosh.com
• Konstantinos Margaritis - Engineer and Founder of VectorCamp, writing optimised assembler for a number

of SIMD/Vector ISAs - konstantinos@vectorcamp.gr
• Dmitry Selyutin - Libre-SOC engineer, working on binutils SVP64 assembler - ghostmansd@gmail.com
• Jacob Lifshay - Libre-SOC engineer, CPU arch and verification - programmerjake@gmail.com
• Cesar Strauss - Libre-SOC engineer, CPU arch and verification - cestrauss@gmail.com
• Andrey Miroshnikov - Libre-SOC engineer, assisting with documentation - andrey@technepisteme.xyz

1

2

Executive Summary

Simple-V is a Scalable Vector ISA Extension specifically tailored for the uniquely powerful capabilities of
the Power ISA. SVP64 is the instruction set format. We invented Simple-V to be simple because we don’t like
complicated.

Simple-V does not modify harm or corrupt the existing Power ISA and does not interfere with an
existing system. It needs only a small allocation of opcodes (five) to implement, whereas any other Vector
implementation would require an intrusive fundamental overhaul of the Power ISA.

It is extremely important to think of Simple-V as a 2-Dimensional ISA: instructions vertical and registers
horizontal otherwise it will be difficult to grasp and appreciate its RISC simplicity. Like all Cray-Style Scalable
Vector ISAs, Simple-V binaries remain ubiquitous, the ISA uniform. The Compliancy Levels offer a means to
scale up in complexity to meet the target application requirements.

• GPUs may implement massive-wide SIMD back-ends, focussing on number-crunching.
• Existing Multi-issue Superscalar implementations may insert Simple-V between decode and issue with

minimal disruption.
• Single-issue in-order implementations are very straightforward.
• Inter-core communication (OpenCAPI, other) may still be utilised because SVP64 fundamentally remains

and respects the Power ISA.

All implementations regardless of back-end capability may execute the exact same binaries (this is known to
be extremely important to the Power ISA ecosystem). If not done as carefully as SVP64, the addition of any
other Scalable Vector Extension would require a significant number of opcodes, putting further pressure on Major
Opcode space which was never designed with Scalable Vectors in mind. Contrast with RISC-V which was designed
over a 7 year period with Cray-style Vectors right from the start.

Even with this amount of time spent, SVP64 exceeds the capability of RVV. RISC-V could have been significantly
enhanced if Simple V had been applied to it: this possibility was investigated very early but the decision was
made to go with Power ISA instead.

Therefore it is crucial to note that Simple-V is not RISC-V and is not RISC-V Vectors. NEC SX Aurora,
RVV, Simple-V and MRISC32 are all based on Cray-style Scalable Vectors of 50 years ago, hence the similarity,
the provision of a setvl instruction, and why they are each called “Scalable” Vectors, because it is the setvl
instruction that presents the programmer with explicit control over Vector length.

VSX and NEON are PackedSIMD, and AVX-512 and ARM SVE2 are Predicated SIMD ISAs. None of
them provide Scalability to the Programmer. SVE2 is Silicon Scalable, not Programmer Scalable: the
distinction is profoundly important (already causing problems). For Predicated SIMD, Programmers must
emulate Cray-style scaling through explicit predicate masking, which increases instruction count in hot-loops.

description, URL
Unit tests and simulator for Power ISA v3.0 and SVP64
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=src/openpower/decoder/isa;hb=HEAD
pypowersim tutorial
https://libre-soc.org/docs/pypowersim/
several thousand more ISA unit tests
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=src/openpower/test;hb=HEAD
demo, showing 4.5x reduction in program size for MP3 decode, greatly simplifies assembler
development
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=media/audio/mp3;hb=HEAD
binutils support for DRAFT SVP64 (now upstream)
https://git.libre-soc.org/?p=binutils-gdb.git;a=shortlog;h=refs/heads/svp64-ng

https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://ftp.libre-soc.org/simple_v_spec.pdf
https://github.com/mrisc32/mrisc32
https://en.m.wikipedia.org/wiki/Cray-1
https://bugs.libre-soc.org/show_bug.cgi?id=893#c15
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=src/openpower/decoder/isa;hb=HEAD
https://libre-soc.org/docs/pypowersim/
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=src/openpower/test;hb=HEAD
https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=media/audio/mp3;hb=HEAD
https://git.libre-soc.org/?p=binutils-gdb.git;a=shortlog;h=refs/heads/svp64-ng

3

IS
A

C
o
m
p
ar
is
o
n
T
ab

le
to

D
R
A
F
T

S
V
P
6
4
-
di
sc
us
si
on

an
d
re
se
ar
ch

at
ht

tp
s:

//
bu

gs
.l

ib
re

-
so

c.
or

g/
sh

ow
_b

ug
.c

gi
?i

d=
89

3

IS
A

na
m
e

N
o

op
co
de
s

N
o

in
tr
in
si
cs

T
ax

on
om

y
/
C
la
ss

B
in
ar
y

C
om

pa
t

se
tv
l

sc
al
ab

le
P
re
d.

M
as
ks

T
w
in

P
re
d

V
ec
to
r

re
gs

12
8-
bi
t

op
s

B
ig

in
t

L
D
ST

F
/F

ir
st

D
at
a-
de
p

F
-fi
rs
t

P
re
d

R
es
ul
t

H
W

M
at
ri
x

D
C
T

F
F
T

SV
P
64

6
1

se
e

2
Sc
al
ab

le
3

ye
s

ye
s

ye
s

ye
s

4
no

5
se
e

6
ye
s7

ye
s

8
ye
s

9
ye
s

10
ye
s

11
ye
s1

2

V
SX

70
0+

70
0?

13
P
ac
ke
dS

IM
D

ye
s

no
no

no
ye
s

14
ye
s

no
no

no
no

ye
s

15
no

N
E
O
N

~2
50

16
70
88

17
P
ac
ke
dS

IM
D

ye
s

no
no

no
ye
s

se
e

18
no

no
no

no
no

no
SV

E
2

~1
00
01

9
60
40

20
P
re
dS

IM
D

21
N
O

22
no

21
ye
s

no
ye
s

se
e

18
no

ye
s

8
no

no
ye
s

23
no

A
V
X
51
22

4
~1
00
0s

25
72
56

26
P
re
dS

IM
D

ye
s

no
ye
s

no
ye
s

se
e1

8
no

no
no

no
ye
s2

7
no

R
V
V

28
~1
90

29
~2
50
00

30
Sc
al
ab

le
31

N
O

22
ye
s

ye
s

no
ye
s

ye
s

32
no

ye
s

no
no

no
no

A
ur
or
aS

X
33

~2
00

34
un

kn
ow

n3
5

Sc
al
ab

le
36

ye
s

ye
s

ye
s

no
ye
s

no
no

no
no

no
?

no
66
00
03

7
~2
00

un
kn

ow
n

A
ut
oV

ec
37

ye
s

se
e

37
se
e3

7
no

se
e

37
no

ye
s3

8
se
e

37
no

no
no

no

1
pl
us

E
X
T
00
1
24
-b
it

pr
efi

xi
ng

us
in
g
25
%

of
E
X
T
00
1
sp
ac
e.

Se
e
{S

V
P
64

C
ha

pt
er
}

2
If

tr
ea
te
d
as

a
1-
D
im

en
si
on

al
IS
A
,
an

d
de
si
gn

ed
ba

dl
y,

th
e
24
-b
it

P
re
fi
x
ex
pa

nd
s
20
0+

sc
al
ar

in
st
ru
ct
io
ns

to
w
el
l
ov
er

a
m
il
li
on

in
tr
in
si
cs

(N
~=

10
ˆ4

ti
m
es

M
~=

10
ˆ2
).

If
tr
ea
te
d
as

a
2-
D
im

en
si
on

al
IS
A

an
d
de
si
gn

ed
w
el
l,
th
er
e
ar
e
fa
r
le
ss
.
N

pr
efi

x
in
tr
in
si
cs

p
lu
s
M

sc
al
ar

in
st
ru
ct
io
n
in
tr
in
si
cs
,
w
he
re

N
is

li
ke
ly

to
b
e
of

th
e
or
de
r
of

10
ˆ2

an
d
M

of
th
e
or
de
r
of

10
ˆ2
.

3
A

2-
D
im

en
si
on

al
Sc
al
ab

le
V
ec
to
r
IS
A
sp
ec
ifi
ca
ll
y
d
es
ig
n
ed

fo
r
th
e
P
ow

er
IS
A

w
it
h
b
ot
h
H
or
iz
on

ta
l-
F
ir
st

an
d
V
er
ti
ca
l-
F
ir
st

M
od

es
.
Se
e
{V

ec
to
r
IS
A

C
om

pa
ri
so
n}

4
on

sp
ec
ifi
c
op

er
at
io
ns
.
Se
e
{S

V
P
64

A
ug

m
en
ta
ti
on

T
ab

le
}
fo
r
fu
ll
li
st
.
K
ey
:
2P

-
T
w
in

P
re
di
ca
ti
on

,
1P

-
Si
ng

le
-P

re
di
ca
te

5
SV

P
64

pr
ov
id
es

a
V
ec
to
r
co
nc
ep
t
on

to
p
of

th
e
S
ca
la
r
G
P
R
,
F
P
R

an
d
C
R

F
ie
ld
s,

ex
te
nd

ed
to

12
8
en
tr
ie
s.

6
SV

P
64

V
ec
to
ri
se
s
Sc
al
ar

op
s.

It
is

up
to

th
e
im

p
le
m
en
to
r
to

ch
oo

se
(o
p
ti
o
n
al
ly
)
w
he
th
er

to
ap

pl
y
SV

P
64

to
e.
g.

V
SX

Q
ua

d-
P
re
ci
si
on

(1
28
-b
it
)
in
st
ru
ct
io
ns
,
to

cr
ea
te

12
8-
bi
t
V
ec
to
r
op

s.
7
bi
g-
in
te
ge
r
ad

d
is

ju
st

sv
.a

dd
e.

F
or

op
ti
m
al

p
er
fo
rm

an
ce

B
ig
in
t
M
ul

an
d
di
vi
de

fi
rs
t
re
qu

ir
e
ad

di
ti
on

of
tw

o
sc
al
ar

op
er
at
io
ns

(i
n
tu
rn
,
na

tu
ra
ll
y
V
ec
to
ri
se
d
by

SV
P
64
).

Se
e
{B

ig
In
te
ge
r
A
na

ly
si
s}

8
L
D
/S

T
Fa

ul
t-
F
ir
st
:
se
e
{S

V
P
64

A
pp

en
di
x}

an
d
A
R
M

SV
E

F
au

lt
-F
ir
st

9
D
at
a-
de
p
en
de
nt

Fa
il
-F
ir
st
:
B
as
ed

on
L
D
/S

T
F
ai
l-
fi
rs
t,

ex
te
nd

ed
to

da
ta
.
T
ru
nc
at
es

V
L
ba

se
d
on

fa
il
in
g
R
c=

1
te
st
.
Si
m
il
ar

to
Z
80

C
P
IR

.
Se
e
{S

V
P
64

A
pp

en
di
x}

10
P
re
di
ca
te
-r
es
ul
t
eff

ec
ti
ve
ly

tu
rn
s
an

y
st
an

da
rd

op
in
to

a
ty
p
e
of

“c
m
p”
.
Se
e
{S

V
P
64

A
pp

en
di
x}

11
A
ny

no
n-
p
ow

er
-o
f-
tw

o
M
at
ri
ce
s
up

to
12
7
F
M
A
C
s
or

ot
he
r
F
M
A
-s
ty
le

op
in
cl
ud

in
g
T
er
na

ry
L
og
ic
al
,
fu
ll
tr
ip
le
-l
oo

p
Sc
he
du

le
.
Se
e
{R

E
M
A
P

su
bs
ys
te
m
}

12
D
C
T

(L
ee
)
an

d
F
F
T

Fu
ll
T
ri
pl
e-
lo
op

s
su
pp

or
te
d,

R
A
D
IX

2-
on

ly
.
N
or
m
al
ly

on
ly

fo
un

d
in

V
L
IW

D
SP

s
(T

I
M
SP

32
0,

Q
ua

lc
om

H
ex
ag
on

).
Se
e
{R

E
M
A
P

su
bs
ys
te
m
}

13
A
lt
iv
ec

gc
c
in
tr
in
si
cs
,
co
nt
ai
ns

li
nk

s
to

ad
di
ti
on

al
V
SX

in
tr
in
si
cs

fo
r
IS
A

2.
05
/6
/7
,
3.
0
an

d
3.
1

14
V
SX

’s
V
ec
to
r
R
eg
is
te
rs

ar
e
m
is
-n
am

ed
:
th
ey

ar
e
10
0%

P
ac
ke
dS

IM
D
.
A
V
X
-5
12

is
no

t
a
V
ec
to
r
IS
A

ei
th
er
.
Se
e
F
ly
nn

’s
T
ax

on
om

y
15
P
ow

er
IS
A

v3
.1

co
nt
ai
ns

“M
at
ri
x
M
ul
ti
pl
y
A
ss
is
t”

(M
M
A
)
w
hi
ch

du
e
to

P
ac
ke
dS

IM
D

is
re
st
ri
ct
ed

to
R
A
D
IX

2
an

d
re
qu

ir
es

in
li
ne

as
se
m
bl
er

lo
op

-u
nr
ol
li
ng

fo
r
no

n-
p
ow

er
-o
f-
tw

o
M
at
ri
x
di
m
en
si
on

s
16
di
ffi
cu
lt

to
as
ce
rt
ai
n,

se
e
N
E
O
N
/V

F
P
.
C
ri
ti
ca
ll
y
de
p
en
ds

on
A
R
M

Sc
al
ar

in
st
ru
ct
io
ns

17
N
E
O
N

32
-b
it

27
54

in
tr
in
si
cs
,
N
E
O
N

64
-b
it

43
34

in
tr
in
si
cs
.

18
A
lt
ho

ug
h
re
gi
st
er
s
m
ay

b
e
12
8-
bi
t
in

N
E
O
N
,
SV

E
2,

an
d
A
V
X
,
un

li
ke

V
SX

th
er
e
ar
e
ve
ry

fe
w

(o
r
no

)
ac
tu
al

ar
it
hm

et
ic

12
8-
bi
t
op

er
at
io
ns
.
O
nl
y
R
V
V

an
d
SV

P
64

ha
ve

th
e
p
os
si
bi
li
ty

of
12
8-
bi
t
op

s
19
di
ffi
cu
lt

to
ex
ac
tl
y
as
ce
rt
ai
n,

se
e
A
R
M

A
rc
hi
te
ct
ur
e
R
ef
er
en
ce

M
an

ua
l
Su

pp
le
m
en
t,

D
D
I
05
84
.
C
ri
ti
ca
ll
y
de
p
en
ds

on
A
R
M

Sc
al
ar

in
st
ru
ct
io
ns
.

20
SV

E
:
41
40

in
tr
in
si
cs
,
SV

E
2
19
00

in
tr
in
si
cs

21
A
R
M

st
at
es

th
at

th
e
Sc
al
ab

il
it
y
is

a
Si
li
co
n-
pa

rt
ne
r
ch
oi
ce
.
Sc
al
ab

il
it
y
in

th
e
IS
A

is
n
o
t
av
ai
la
b
le

to
th
e
p
ro
g
ra
m
m
er
:
th
er
e
is

no
se

tv
l
in
st
ru
ct
io
n
in

SV
E
2,

w
hi
ch

is
al
re
ad

y
ca
us
in
g
as
se
m
bl
er

pr
og
ra
m
m
er

di
ffi
cu
lt
ie
s.

qu
ot
e
“y
o
u
m
ay

b
e
st
u
ck

w
it
h
o
n
ly

u
si
n
g
th
e
b
o
tt
o
m

1
2
8
b
it
s
o
f
th
e
v
ec
to
r,

o
r
n
ee
d
to

co
d
e
sp
ec
ifi
ca
ll
y
fo
r
ea
ch

w
id
th
”

22
“S

il
ic
on

-P
ar
tn
er
”
Sc
al
in
g
ac
hi
ev
ed

th
ro
ug

h
al
lo
w
in
g
sa
m
e
in
st
ru
ct
io
n
to

ac
t
on

di
ff
er
en
t
re
gfi

le
si
ze

an
d
bi
tw

id
th
.
T
hi
s
ca
ta
st
ro
ph

ic
al
ly

re
su
lt
s
in

bi
na

ry
no

n-
in
te
ro
p
er
ab

il
it
y.

23
Sc
al
ab

le
M
at
ri
x
O
pt
io
na

l
E
xt
en
si
on

ou
te
r-
pr
od

uc
t
in
st
ru
ct
io
ns

SM
O
P
A

w
hi
ch

ar
e
p
ow

er
-2

ba
se
d
on

Si
li
co
n-
pa

rt
ne
r
SI
M
D

w
id
th
.
N
on

-p
ow

er
-2

no
t
su
pp

or
te
d
bu

t
ze
ro
-i
np

ut
m
as
ki
ng

is
.

24
A
V
X
51
2
W
ik
ip
ed
ia
,
L
if
ec
yc
le

of
an

in
st
ru
ct
io
n
se
t
in
cl
ud

in
g
fu
ll
sl
id
es

25
di
ffi
cu
lt

to
ex
ac
tl
y
as
ce
rt
ai
n,

co
nt
ai
ns

su
bs
et
s.

C
ri
ti
ca
ll
y
de
p
en
ds

on
IS
A

su
pp

or
t
fr
om

ea
rl
ie
r
x8

6
IS
A

su
bs
et
s
(s
ev
er
al

m
or
e
th
ou

sa
nd

in
st
ru
ct
io
ns
).

Se
e
SI
M
D

IS
A

li
st
in
g

26
C
ou

nt
in
cl
ud

es
SS

E
,
SS

E
2,

A
V
X
,
A
V
X
2
an

d
al
l
A
V
X
51
2
va
ri
an

ts
27
A
dv

an
ce
d
m
at
ri
x
E
xt
en
si
on

s
su
pp

or
ts

B
F
16

an
d
IN

T
8
on

ly
.
Se
pa

ra
te

re
gfi

le
,
p
ow

er
-o
f-
tw

o
“t
il
es
”.

N
ot

ge
ne
ra
l-
pu

rp
os
e
at

al
l.

28
R
V
V

Sp
ec

29
R
IS
C
-V

V
ec
to
rs

ar
e
no

t
st
an

d-
al
on

e,
i.
e.

li
ke

SV
E
2
an

d
A
V
X
-5
12

ar
e
cr
it
ic
al
ly

de
p
en
de
nt

on
th
e
Sc
al
ar

IS
A

(a
n
ad

di
ti
on

al
~9
6
in
st
ru
ct
io
ns

fo
r
th
e
Sc
al
ar

R
V
64
G
C

se
t,

ne
ed
ed

fo
r
L
in
ux

).
30
R
V
V

in
tr
in
si
cs

li
st
in
g
pa

ge
is

25
,0
00

li
ne
s
lo
ng

.
31
L
ik
e
th
e
or
ig
in
al

C
ra
y
R
V
V

is
a
tr
ul
y
sc
al
ab

le
V
ec
to
r
IS
A

(C
ra
y
se
tv
l
in
st
ru
ct
io
n)
.
H
ow

ev
er
,
li
ke

SV
E
2,

th
e
M
ax

im
um

V
ec
to
r
le
ng

th
is

a
Si
li
co
n-
pa

rt
ne
r
ch
oi
ce
,
w
hi
ch

cr
ea
te
s
si
m
il
ar

li
m
it
at
io
ns

th
at

SV
P
64

do
es

no
t
ha

ve
.
T
he

R
IS
C
-V

F
ou

nd
er
s
st
ro
ng

ly
di
sc
ou

ra
ge

eff
or
ts

by
pr
og
ra
m
m
er
s
to

fi
nd

ou
t
th
e
Si
li
co
n’
s
M
ax

im
um

V
ec
to
r
L
en
gt
h,

as
an

eff
or
t
to

st
ee
r
pr
og
ra
m
m
er
s
to
w
ar
ds

Si
li
co
n-
in
de
p
en
de
nt

as
se
m
bl
er
.
T
h
is

re
q
u
ir
es

al
l
al
g
o
ri
th
m
s
to

co
n
ta
in

a
lo
o
p
co
n
st
ru
ct
.
M
A
X
V
L
in

SV
P
64

is
a
Sp

ec
-h
ar
d-
fi
xe
d
qu

an
ti
ty

th
er
ef
or
e
lo
op

co
ns
tr
uc
ts

ar
e
no

t
ne
ce
ss
ar
y
10
0%

of
th
e
ti
m
e.

32
li
ke

SV
P
64

it
is

up
to

th
e
ha

rd
w
ar
e
im

pl
em

en
to
r
(S
il
ic
on

pa
rt
ne
r)

to
ch
oo

se
w
he
th
er

to
su
pp

or
t
12
8-
bi
t
el
em

en
ts
.

33
N
E
C

SX
A
ur
or
a
is

ba
se
d
on

th
e
or
ig
in
al

C
ra
y
V
ec
to
rs

34
A
ur
or
a
IS
A

gu
id
e
A
pp

en
di
x-
3
11
.1

p5
08

35
U
nk

no
w
n.

es
ti
m
at
ed

to
b
e
of

th
e
or
de
r
of

le
ng

th
of

R
V
V

du
e
to

al
so

b
ei
ng

a
C
ra
y-
st
yl
e
Sc
al
ab

le
IS
A
,
N
E
C

m
ai
nt
ai
ns

an
L
LV

M
ha

rd
fo
rk

36
L
ik
e
th
e
or
ig
in
al

C
ra
y
V
ec
to
rs
,
th
e
IS
A

V
ec
to
r
L
en
gt
h
is

in
de
p
en
de
nt

of
th
e
un

de
rl
yi
ng

ha
rd
w
ar
e,

ho
w
ev
er

G
en
er
at
io
n
1
ha

s
25
6
el
em

en
ts

p
er

V
ec
to
r
re
gi
st
er

(3
.2
.4

p2
4,

A
ur
or
a
IS
A

gu
id
e)

37
M
it
ch

A
ls
up

’s
M
yI
SA

66
00
0
is

av
ai
la
bl
e
on

re
qu

es
t.

A
p
ow

er
fu
l
R
IS
C

IS
A

w
it
h
a
H
ar
d
w
ar
e-
le
v
el

au
to
-v
ec
to
ri
sa
ti
o
n
L
O
O
P

bu
il
t-
in

as
an

ex
te
ns
io
n
na

m
ed

V
V
M
.
C
la
ss
ifi
ed

as
“V

er
ti
ca
l-
F
ir
st
”.

38
M
yI
SA

66
00
0
ha

s
a
C
A
R
R
Y

re
gi
st
er

up
to

64
-b
it
.
R
ep

ea
te
d
ap

pl
ic
at
io
n
of

F
M
A

(e
sp
.
w
it
hi
n
A
ut
o-
V
ec
to
re
d
L
O
O
P
S)

au
to
m
at
ic
al
ly

an
d
in
he
re
nt
ly

cr
ea
te
s
bi
g-
in
t
op

er
at
io
ns

w
it
h
ze
ro

eff
or
t.

https://bugs.libre-soc.org/show_bug.cgi?id=893
https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://developer.arm.com/documentation/den0018/a/NEON-and-VFP-Instruction-Summary/List-of-all-NEON-and-VFP-instructions
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/102340_0001_00_en_introduction-to-sve2.pdf?revision=aae96dd2-5334-4ad3-9a47-393086a20fea
https://gist.github.com/zingaburga/805669eb891c820bd220418ee3f0d6bd#file-sve2-md
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture
https://developer.arm.com/documentation/ddi0602/2022-06/SME-Instructions/SMOPA--Signed-integer-sum-of-outer-products-and-accumulate-?lang=en
https://www.realworldtech.com/forum/?threadid=202688&curpostid=207774
https://en.wikipedia.org/wiki/AVX-512
https://media.handmade-seattle.com/tom-forsyth/
https://www.officedaytime.com/simd512e/
https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://raw.githubusercontent.com/riscv-non-isa/rvv-intrinsic-doc/master/intrinsic_funcs.md
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#sec-vector-extensions
https://ftp.libre-soc.org/NEC_SX_Aurora_TSUBASA_VectorEngine-as-manual-v1.2.pdf
https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://github.com/sx-aurora-dev

Part I

Scalable Vectors Primer

4

5

List of Acronyms

AVX-512 Intel Advanced Vector Extensions 512-bit

CPU Central Processing Unit

DCT Discrete Cosine Transform

DSP Digital Signal Processors

FFT Fast Fourier Transform

ISA Instruction Set Architecture

MMX Intel’s first SIMD implementation

RVV RISC-V Vector extension

SIMD Single Instruction Multiple Data

SWAR SIMD Within A Register (see Flynn’s Taxonomy)

SV (Scalable) Simple Vectorisation or Simple-V

VLIW Very Long Instruction Word

VSX 128-bit Packed SIMD Extension to the Power ISA

6

Summary

The proposed SV is a Scalable Vector Specification for a hardware for-loop that ONLY uses scalar instruc-
tions.

• The Power ISA v3.1 Spec is not altered. v3.1 Code-compatibility is guaranteed.

• Does not require sacrificing 32-bit Major Opcodes.

• Does not require adding duplicates of instructions (popcnt, popcntw, popcntd, vpopcntb, vpopcnth,
vpopcntw, vpopcntd)

• Fully abstracted: does not create Micro-architectural dependencies (no fixed "Lane" size), one binary works
across all existing and future implementations.

• Specifically designed to be easily implemented on top of an existing Micro-architecture (especially Superscalar
Out-of-Order Multi-issue) without disruptive full architectural redesigns.

• Divided into Compliancy Levels to suit differing needs.

• At the highest Compliancy Level only requires five instructions (SVE2 requires appx 9,000. AVX-512
around 10,000. RVV around 300).

• Predication, often-requested, is added cleanly (without modifying the v3.1 Power ISA)

• In-registers arbitrary-sized Matrix Multiply is achieved in three instructions (without adding any v3.1
Power ISA instructions)

• Full DCT and FFT RADIX2 Triple-loops are achieved with dramatically reduced instruction count, and
power consumption expected to greatly reduce. Normally found only in high-end VLIW DSP (TI MSP,
Qualcomm Hexagon)

• Fail-First Load/Store allows Vectorised high performance strncpy to be implemented in around 14 instruc-
tions (hand-optimised VSX assembler is 240).

• Inner loop of MP3 implemented in under 100 instructions (gcc produces 450 for the same function on
POWER9).

All areas investigated so far consistently showed reductions in executable size, which as outlined in [?] has an
indirect reduction in power consumption due to less I-Cache/TLB pressure and also Issue remaining idle for
long periods. Simple-V has been specifically and carefully crafted to respect the Power ISA’s Supercomputing
pedigree.

Figure 1: Showing how SV fits in between Decode and Issue

7

What is SIMD?

SIMD is a way of partitioning existing CPU registers of 64-bit length into smaller 8-, 16-, 32-bit pieces. [?][?]
These partitions can then be operated on simultaneously, and the initial values and results being stored as entire
64-bit registers (SWAR). The SIMD instruction opcode includes the data width and the operation to perform.

Figure 2: SIMD multiplication

This method can have a huge advantage for rapid processing of vector-type data (image/video, physics simulations,
cryptography, etc.), [?], and thus on paper is very attractive compared to scalar-only instructions. As long as the
data width fits the workload, everything is fine.

Shortfalls of SIMD

SIMD registers are of a fixed length and thus to achieve greater performance, CPU architects typically increase
the width of registers (to 128-, 256-, 512-bit etc) for more partitions.

Additionally, binary compatibility is an important feature, and thus each doubling of SIMD registers also expands
the instruction set. The number of instructions quickly balloons and this can be seen in for example IA-32
expanding from 80 to about 1400 instructions since the 1970s[?].

Five digit Opcode proliferation (10,000 instructions) is overwhelming. The following are just some of the reasons
why SIMD is unsustainable as the number of instructions increase:

• Hardware design, ASIC routing etc.

• Compiler design

• Documentation of the ISA

• Manual coding and optimisation

• Time to support the platform

• Compilance Suite development and testing

• Protracted Variable-Length encoding (x86) severely compromises Multi-issue decoding

Scalable Vector Architectures

An older alternative exists to utilise data parallelism - vector architectures. Vector CPUs collect operands from
the main memory, and store them in large, sequential vector registers.

A simple vector processor might operate on one element at a time, however as the element operations are usually
independent, a processor could be made to compute all of the vector’s elements simultaneously, taking advantage
of multiple pipelines.

Typically, today’s vector processors can execute two, four, or eight 64-bit elements per clock cycle. [?]. Vector
ISAs are specifically designed to deal with (in hardware) fringe cases where an algorithm’s element count is not

8

a multiple of the underlying hardware "Lane" width. The element data width is variable (8 to 64-bit just like in
SIMD) but it is the number of elements being variable under control of a "setvl" instruction that specifically
makes Vector ISAs "Scalable"

RVV supports a VL of up to 216 or 65536 bits, which can fit 1024 64-bit words. [?]. The Cray-1 had 8 Vector
Registers with up to 64 elements (64-bit each). An early Draft of RVV supported overlaying the Vector Registers
onto the Floating Point registers, similar to MMX.

Figure 3: Cray Vector registers: 8 registers, 64 elements each

Simple-V’s "Vector" Registers (a misnomer) are specifically designed to fit on top of the Scalar (GPR, FPR)
register files, which are extended from the default of 32, to 128 entries in the high-end Compliancy Levels. This
is a primary reason why Simple-V can be added on top of an existing Scalar ISA, and in particular why there is
no need to add explicit Vector Registers or Vector instructions. The diagram below shows conceptually how a
Vector’s elements are sequentially and linearly mapped onto the Scalar register file:

Figure 4: three instructions, same vector length, different element widths

9

Simple Vectorisation

SV is a Scalable Vector ISA designed for hybrid workloads (CPU, GPU, VPU, 3D). Includes features normally
found only on Cray-style Supercomputers (Cray-1, NEC SX-Aurora) and GPUs. Keeps to a strict uniform RISC
paradigm, leveraging a scalar ISA by using "Prefixing". No dedicated vector opcodes exist in SV, at all.
SVP64 uses 25% of the Power ISA v3.1 64-bit Prefix space (EXT001) to create the SV Vectorisation Context for
the 32-bit Scalar Suffix.

Main design principles

• Introduce by implementing on top of existing Power ISA

• Effectively a hardware for-loop, pauses main PC, issues multiple scalar operations

• Strictly preserves (leverages) underlying scalar execution dependencies as if the for-loop had been expanded
into actual scalar instructions ("preserving Program Order")

• Augments existing instructions by adding "tags" - provides Vectorisation "context" rather than adding new
opcodes.

• Does not modify or deviate from the underlying scalar Power ISA unless there’s a significant performance
boost or other advantage in the vector space

• Aimed at Supercomputing: avoids creating significant sequential dependency hazards, allowing high
performance multi-issue superscalar microarchitectures to be leveraged.

Advantages include:

• Easy to create first (and sometimes only) implementation as a literal for-loop in hardware, simulators, and
compilers.

• Obliterates SIMD opcode proliferation (O(N6)) as well as dedicated Vectorisation ISAs. No more separate
vector instructions.

• Reducing maintenance overhead (no separate Vector instructions). Adding any new Scalar instruction
automatically adds a Vectorised version of the same.

• Easier for compilers, coders, documentation

Contents

Preamble 1

Comparison Table 3

I Scalable Vectors Primer 4

II Scalable Vectors for the Power ISA 11

1 Fields and Forms 12

2 Scalable Vectors for the Power ISA 36
2.1 Scalable Vectors for the Power ISA . 36
2.2 Sub-pages . 37
2.3 Stability Guarantees in Simple-V . 38
2.4 Optional Scalar instructions . 39
2.5 Architectural Note . 39
2.6 Other Scalable Vector ISAs . 40
2.7 Major opcodes summary . 41
2.8 Other . 42

3 Other Vector ISAs 43
3.1 Comparative analysis . 43
3.2 SIMD ISAs commonly mistaken for Vector . 44
3.3 Actual 3D GPU Architectures and ISAs (all SIMD) . 44
3.4 Actual Scalar Vector Processor Architectures and ISAs . 44

4 Overview 46
4.1 SV Overview . 46
4.2 Introduction: SIMD and Cray Vectors . 46

4.2.1 SV . 47
4.3 Adding Scalar / Vector . 49

4.3.1 Register “tagging” . 49
4.4 Adding single predication . 50
4.5 Predicate “zeroing” mode . 51
4.6 Element Width overrides . 51

4.6.1 Why a LE regfile? . 54
4.6.2 Source and Destination overrides . 55
4.6.3 Signed arithmetic . 55
4.6.4 Saturation . 56

4.7 Quick recap so far . 56
4.7.1 SUBVL . 57

4.8 Swizzle . 57

10

CONTENTS 11

4.9 Twin Predication . 58
4.10 Exception-based Fail-on-first . 58
4.11 Data-dependent fail-first . 59
4.12 Vertical-First Mode . 60
4.13 Instruction format . 61
4.14 Conclusion . 61

5 Compliancy Levels 62
5.1 Simple-V Compliancy Levels . 62

5.1.1 Zero-Level . 63
5.1.2 Ultra-Embedded Level . 63
5.1.3 Embedded Level . 63
5.1.4 DSP / Audio / Video Level . 64
5.1.5 High-end DSP . 64
5.1.6 3D / Advanced / Supercomputing . 64
5.1.7 Examples . 64

6 SVP64 66
6.1 SVP64 Zero-Overhead Loop Prefix Subsystem . 66

6.1.1 Introduction . 67
6.1.2 SVP64 encoding features . 67
6.1.3 Definition of Reserved in this spec. 67
6.1.4 Definition of “UnVectoriseable” . 68
6.1.5 Definition of Strict Program Order . 68
6.1.6 Register files, elements, and Element-width Overrides . 69
6.1.7 Scalar Identity Behaviour . 73
6.1.8 Register Naming and size . 73
6.1.9 Future expansion. 74
6.1.10 SVP64 Remapped Encoding (RM[0:23]) . 76
6.1.11 Common RM fields . 76
6.1.12 Mode . 77
6.1.13 ELWIDTH Encoding . 77
6.1.14 SUBVL Encoding . 78
6.1.15 MASK/MASK_SRC & MASKMODE Encoding . 78
6.1.16 Extra Remapped Encoding . 80
6.1.17 R*_EXTRA2/3 . 82
6.1.18 Appendix . 85

7 SPRs 86
7.1 SPRs . 86

7.1.1 SVSTATE SPR . 86
7.1.2 SVLR . 89

8 Arithmetic Mode 91
8.1 Normal SVP64 Modes, for Arithmetic and Logical Operations . 91

8.1.1 Mode . 91
8.1.2 Rounding, clamp and saturate . 92
8.1.3 Reduce mode . 93
8.1.4 Data-dependent Fail-on-first . 93
8.1.5 Data-dependent fail-first on CR operations (crand etc) . 95

9 Load/Store Mode 96
9.1 SV Load and Store . 96

9.1.1 Rationale . 96
9.1.2 Modes overview . 96
9.1.3 Format and fields . 97

CONTENTS 12

9.1.4 Vectorisation of Scalar Power ISA v3.0B . 99
9.1.5 LD/ST Indexed vs Indexed REMAP . 101
9.1.6 LD/ST ffirst (Fault-First) . 101
9.1.7 Data-Dependent Fail-First (not Fail/Fault-First) . 102
9.1.8 LOAD/STORE Elwidths . 104
9.1.9 Remapped LD/ST . 106

10 Condition Register Fields Mode 108
10.1 Condition Register SVP64 Operations . 108

10.1.1 Format . 109
10.1.2 Data-dependent fail-first on CR operations . 109
10.1.3 Reduction and Iteration . 110
10.1.4 Unusual and quirky CR operations . 111
10.1.5 Effectively-separate Vector and Scalar Condition Register file 111

11 Branch Mode 112
11.1 SVP64 Branch Conditional behaviour . 112

11.1.1 Rationale . 112
11.1.2 Overview . 113
11.1.3 Format and fields . 114
11.1.4 Vectorised CR Field numbering, and Scalar behaviour . 115
11.1.5 Horizontal-First and Vertical-First Modes . 115
11.1.6 Description and Modes . 115
11.1.7 Boolean Logic combinations . 118
11.1.8 Pseudocode and examples . 118

12 setvl instruction 125
12.1 setvl: Set Vector Length . 125

12.1.1 setvl . 125
12.1.2 Examples . 127

13 svstep instruction 129
13.1 svstep: Vertical-First Stepping and status reporting . 129
13.2 Appendix . 132

14 REMAP subsystem 137
14.1 REMAP . 137

14.1.1 Basic principle . 138
14.1.2 Example Usage . 139
14.1.3 Horizontal-Parallelism Hint . 139
14.1.4 REMAP types . 140
14.1.5 Determining Register Hazards . 143
14.1.6 REMAP area of SVSTATE SPR . 143

14.2 svremap instruction . 145
14.3 SHAPE Remapping SPRs . 146

14.3.1 Parallel Reduction / Prefix-Sum Mode . 146
14.3.2 FFT/DCT mode . 146
14.3.3 Matrix Mode . 147
14.3.4 Indexed Mode . 148

14.4 svshape instruction . 150
14.5 svindex instruction . 152
14.6 svshape2 (offset-priority) . 154

15 Swizzle Move 155
15.1 mv.swizzle . 155
15.2 Format . 155

CONTENTS 13

15.3 Pack/Unpack Mode: . 158

16 Pack / Unpack 160
16.1 Vector Pack/Unpack operations . 160
16.2 SVSTATE Pack/unpack Mode bits . 160

A SVP64 Appendix 161
A.1 Appendix . 161

A.1.1 Partial Implementations . 161
A.1.2 XER, SO and other global flags . 161
A.1.3 EXTRA Field Mapping . 162
A.1.4 Single Predication . 163
A.1.5 Twin Predication . 164
A.1.6 Pack/Unpack . 164
A.1.7 Reduce modes . 165
A.1.8 Fail-on-first . 167
A.1.9 CR Operations . 168
A.1.10 Register Profiles . 171
A.1.11 SV pseudocode illustration . 171
A.1.12 Assembly Annotation . 172
A.1.13 Parallel-reduction algorithm . 173
A.1.14 Element-width overrides </> . 173
A.1.15 Twin (implicit) result operations . 175

B SVP64 Quirks 177
B.1 The Rules . 177
B.2 Instruction Groups . 178
B.3 Abstraction between Prefix and Suffix . 180
B.4 Predication . 180

B.4.1 Single Predication . 180
B.4.2 Twin Predication . 181

B.5 CR weird instructions . 181
B.6 mv.x (vector permute) . 181
B.7 REMAP and other reordering . 182
B.8 Branch-Conditional . 182
B.9 Saturation . 182
B.10 Fail-First . 183
B.11 OE=1 . 183
B.12 Indexed REMAP and CR Field Predication Hazards . 183
B.13 Floating-Point “Single” becomes “Half” . 184
B.14 Word frequently becomes “half” . 184
B.15 Vertical-First and Subvectors . 184
B.16 Swizzle and Pack/Unpack . 185
B.17 LD/ST with zero-immediate vs mapreduce mode . 185
B.18 Limited space in LD/ST Mode . 185
B.19 sv.mtcr on entire 64-bit Condition Register . 186
B.20 Separate Scalar and Vector Condition Register files . 186

C REMAP algorithms 187
C.0.1 REMAP Matrix pseudocode . 187
C.0.2 REMAP FFT, DFT, NTT . 190
C.0.3 svshape pseudocode . 190
C.0.4 svindex pseudocode . 194
C.0.5 svshape2 pseudocode . 195

D Simple-V pseudocode 197

CONTENTS 14

D.1 svstep . 197
D.2 setvl . 197
D.3 svremap . 198
D.4 svshape . 198
D.5 svindex . 203
D.6 svshape2 . 204

E Simple-V Analysis 206
E.1 Simple-V Analysis . 206

F SVP64 Augmentation Table 225
F.1 Draft SVP64 Power ISA register ’profile’s . 226
F.2 map to old SV Prefix . 226
F.3 keys . 226

F.3.1 LDST-1R-1W-imm (LDSTRM-2P-1S1D) . 227
F.3.2 LDST-1R-2W-imm (LDSTRM-2P-1S2D) . 228
F.3.3 LDST-2R (-) . 228
F.3.4 LDST-2R-imm (LDSTRM-2P-2S) . 228
F.3.5 LDST-2R-1W (LDSTRM-2P-2S1D) . 228
F.3.6 LDST-2R-1W-imm (LDSTRM-2P-2S1D) . 229
F.3.7 LDST-2R-2W (LDSTRM-2P-2S1D) . 229
F.3.8 LDST-2R-2W-imm (-) . 230
F.3.9 LDST-3R (LDSTRM-2P-3S) . 230
F.3.10 LDST-3R-CRo (LDSTRM-2P-3S) . 230
F.3.11 LDST-3R-1W (LDSTRM-2P-2S1D) . 230
F.3.12 (non-SV) . 231
F.3.13 imm (non-SV) . 231
F.3.14 CRo (-) . 231
F.3.15 CRio (RM-2P-1S1D) . 232
F.3.16 CR=2R1W (RM-1P-2S1D) . 232
F.3.17 1W (non-SV) . 232
F.3.18 1W-imm (RM-1P-1D) . 232
F.3.19 1W-CRo (RM-1P-1D) . 232
F.3.20 1W-CRi (RM-2P-1S1D) . 233
F.3.21 1W-CRi (RM-2P-1S1D) . 233
F.3.22 1R (non-SV) . 233
F.3.23 1R-imm (RM-1P-1S) . 233
F.3.24 1R-CRo (RM-2P-1S1D) . 233
F.3.25 1R-CRo (RM-2P-1S1D) . 234
F.3.26 1R-CRio (RM-2P-2S1D) . 234
F.3.27 1R-1W (RM-2P-1S1D) . 234
F.3.28 1R-1W-imm (RM-2P-1S1D) . 234
F.3.29 1R-1W-CRo (RM-2P-1S1D) . 235
F.3.30 1R-1W-CRo (RM-2P-1S1D) . 236
F.3.31 2R (non-SV) . 236
F.3.32 2R-CRo (RM-1P-2S1D) . 236
F.3.33 2R-1W (RM-1P-2S1D) . 237
F.3.34 2R-1W-CRo (RM-1P-2S1D) . 237
F.3.35 2R-1W-CRo (RM-1P-2S1D) . 239
F.3.36 2R-1W-CRi (RM-1P-3S1D) . 239
F.3.37 3R-1W-CRo (RM-1P-3S1D) . 240

F.4 svp64 remaps . 240
F.4.1 LDSTRM-2P-1S1D . 241
F.4.2 LDSTRM-2P-1S2D . 241
F.4.3 LDSTRM-2P-2S . 241

CONTENTS 15

F.4.4 LDSTRM-2P-2S1D . 242
F.4.5 LDSTRM-2P-3S . 243
F.4.6 RM-2P-1S1D . 243
F.4.7 RM-1P-2S1D . 245
F.4.8 RM-1P-1D . 247
F.4.9 RM-1P-1S . 247
F.4.10 RM-2P-2S1D . 248
F.4.11 RM-1P-3S1D . 248

III Scalar Instructions 250

1 SV Vector-assist Scalar ops 252
1.1 SV Vector-assist Operations. 252

1.1.1 Mask-suited Bitmanipulation . 252
1.1.2 Carry-lookahead . 253

2 CR Weird ops 255
2.1 New instructions for CR/INT predication . 255

2.1.1 crrweird . 255
2.1.2 mfcrrweird . 255
2.1.3 mtcrrweird . 256
2.1.4 mtcrweird . 256
2.1.5 mcrfm - Move CR Field, masked. 257
2.1.6 crweirder . 257

2.2 Vectorised versions involving GPRs . 259
2.3 Predication Examples . 260

3 Bitmanip ops 262
3.1 Implementation Log . 262
3.2 bitmanipulation . 262
3.3 Draft Opcode tables . 263
3.4 binary and ternary bitops . 265

3.4.1 ternlogi . 265
3.4.2 binlut . 266
3.4.3 crternlogi . 266
3.4.4 crbinlog . 267

3.5 int ops . 267
3.5.1 min/m . 267
3.5.2 average . 268
3.5.3 absdu . 268
3.5.4 abs-accumulate . 268

3.6 shift-and-add . 268
3.7 bitmask set . 269
3.8 grevlut . 271
3.9 xperm . 272
3.10 bitmatrix . 273
3.11 Introduction to Carry-less and GF arithmetic . 275
3.12 Instructions for Carry-less Operations . 275

3.12.1 Carry-less Multiply Instructions . 276
3.12.2 clmadd Carry-less Multiply-Add . 277
3.12.3 cltmadd Twin Carry-less Multiply-Add (for FFTs) . 277
3.12.4 cldivrem Carry-less Division and Remainder . 277
3.12.5 cldiv Carry-less Division . 278
3.12.6 clrem Carry-less Remainder . 278

3.13 Instructions for Binary Galois Fields GF(2ˆm) . 278

CONTENTS 16

3.13.1 GFBREDPOLY SPR – Reducing Polynomial . 278
3.13.2 gfbredpoly – Set the Reducing Polynomial SPR GFBREDPOLY 279
3.13.3 gfbmul – Binary Galois Field GF(2ˆm) Multiplication . 279
3.13.4 gfbmadd – Binary Galois Field GF(2ˆm) Multiply-Add . 279
3.13.5 gfbtmadd – Binary Galois Field GF(2ˆm) Twin Multiply-Add (for FFT) 280
3.13.6 gfbinv – Binary Galois Field GF(2ˆm) Inverse . 280

3.14 Instructions for Prime Galois Fields GF(p) . 281
3.14.1 GFPRIME SPR – Prime Modulus For gfp* Instructions . 281
3.14.2 gfpadd Prime Galois Field GF(p) Addition . 281
3.14.3 gfpsub Prime Galois Field GF(p) Subtraction . 281
3.14.4 gfpmul Prime Galois Field GF(p) Multiplication . 281
3.14.5 gfpinv Prime Galois Field GF(p) Invert . 282
3.14.6 gfpmadd Prime Galois Field GF(p) Multiply-Add . 283
3.14.7 gfpmsub Prime Galois Field GF(p) Multiply-Subtract . 283
3.14.8 gfpmsubr Prime Galois Field GF(p) Multiply-Subtract-Reversed 283
3.14.9 gfpmaddsubr Prime Galois Field GF(p) Multiply-Add and Multiply-Sub-Reversed (for FFT)283

3.15 Already in POWER ISA or subsumed . 284
3.15.1 cmix . 284
3.15.2 count leading/trailing zeros with mask . 284
3.15.3 bit deposit . 284
3.15.4 bit extract . 285
3.15.5 centrifuge . 285
3.15.6 bit to byte permute . 285
3.15.7 grev . 285
3.15.8 gorc . 286

3.16 Appendix . 286

4 FP/Int Conversion ops 287
4.1 FPR-to-GPR and GPR-to-FPR . 287
4.2 Proposed New Scalar Instructions . 288
4.3 Float load immediate . 289

4.3.1 Load BF16 Immediate . 289
4.3.2 Float Immediate Second-Half MV . 290

5 FP Class ops 291
5.1 fclass . 291

6 Audio and Video Opcodes 293
6.1 Scalar OpenPOWER Audio and Video Opcodes . 293
6.2 Summary . 293
6.3 Instructions . 294

6.3.1 Average Add . 294
6.3.2 Absolute Signed Difference . 294
6.3.3 Absolute Unsigned Difference . 294
6.3.4 Absolute Accumulate Unsigned Difference . 295
6.3.5 Absolute Accumulate Signed Difference . 295

7 Big Integer 296
7.1 Big Integer Arithmetic . 296
7.2 Analysis . 296
7.3 DRAFT dsld . 297
7.4 DRAFT dsrd . 297
7.5 maddedu . 297
7.6 divmod2du RT,RA,RB,RC . 298
7.7 [DRAFT] EXT04 Proposed Map . 299

CONTENTS 17

8 Transcendentals 300
8.1 DRAFT Scalar Transcendentals . 300
8.2 TODO: . 301
8.3 Requirements . 301
8.4 Proposed Opcodes vs Khronos OpenCL vs IEEE754-2019 . 302

8.4.1 List of 2-arg opcodes . 304
8.4.2 List of 1-arg transcendental opcodes . 305
8.4.3 List of 1-arg trigonometric opcodes . 306

8.5 Opcode Tables for PO=59/63 XO=1—011– . 306
8.6 DRAFT List of 2-arg opcodes . 307
8.7 DRAFT List of 1-arg transcendental opcodes . 308
8.8 DRAFT List of 1-arg trigonometric opcodes . 308
8.9 Subsets . 309

8.9.1 Transcendental Subsets . 310
8.9.2 Trigonometric subsets . 311

8.10 Synthesis, Pseudo-code ops and macro-ops . 312
8.11 Evaluation and commentary . 312

G Big Integer Analysis 313
G.1 Analysis . 313
G.2 Vector Add and Subtract . 314
G.3 Vector Shift . 315
G.4 Vector Multiply . 315
G.5 Vector Divide . 317
G.6 Conclusion . 320

H Bitmanip pseudocode 321
H.1 Ternary Bitwise Logic Immediate . 321
H.2 Generalized Bit-Reverse . 321
H.3 Generalized Bit-Reverse Immediate . 322
H.4 Generalized Bit-Reverse Word . 322
H.5 Generalized Bit-Reverse Word Immediate . 322
H.6 Add With Shift By Immediate . 323
H.7 Add With Shift By Immediate Word . 323
H.8 Add With Shift By Immediate Unsigned Word . 323

I Floating Point pseudocode 324
I.1 [DRAFT] Floating Add FFT/DCT [Single] . 324
I.2 [DRAFT] Floating Add FFT/DCT [Double] . 324
I.3 [DRAFT] Floating Subtract FFT/DCT [Single] . 325
I.4 [DRAFT] Floating Subtract FFT/DCT [Double] . 325
I.5 [DRAFT] Floating Multiply FFT/DCT [Single] . 325
I.6 [DRAFT] Floating Multiply FFT/DCT [Double] . 326
I.7 [DRAFT] Floating Divide FFT/DCT [Single] . 326
I.8 [DRAFT] Floating Divide FFT/DCT [Double] . 326
I.9 [DRAFT] Floating Twin Multiply-Add DCT [Single] . 327
I.10 [DRAFT] Floating Multiply-Add FFT [Single] . 327
I.11 [DRAFT] Floating Multiply-Sub FFT [Single] . 327
I.12 [DRAFT] Floating Negative Multiply-Add FFT [Single] . 328
I.13 [DRAFT] Floating Negative Multiply-Sub FFT [Single] . 328

J Fixed Point pseudocode 329
J.1 [DRAFT] Multiply and Add Extended Doubleword Unsigned . 329
J.2 [DRAFT] Multiply and Add Extended Doubleword Unsigned Signed 329
J.3 [DRAFT] Divide/Modulo Double-width Doubleword Unsigned 330
J.4 [DRAFT] Double-width Shift Left Doubleword . 330

CONTENTS 18

J.5 [DRAFT] Double-width Shift Right Doubleword . 331

IV Scalar Power ISA pseudocode 332

Preamble 333

Binary Coded Decimal pseudocode 334
J.1 Convert Declets To Binary Coded Decimal . 334
J.2 Add and Generate Sixes . 334
J.3 Convert Binary Coded Decimal To Declets . 334

Branch pseudocode 336
J.4 Branch . 336
J.5 Branch Conditional . 336
J.6 Branch Conditional to Link Register . 337
J.7 Branch Conditional to Count Register . 337
J.8 Branch Conditional to Branch Target Address Register . 337

Fixed Point Compare pseudocode 339
J.9 Compare Immediate . 339
J.10 Compare . 339
J.11 Compare Logical Immediate . 340
J.12 Compare Logical . 340
J.13 Compare Ranged Byte . 340
J.14 Compare Equal Byte . 341

Condition Register pseudocode 342
J.15 Condition Register AND . 342
J.16 Condition Register NAND . 342
J.17 Condition Register OR . 342
J.18 Condition Register XOR . 343
J.19 Condition Register NOR . 343
J.20 Condition Register Equivalent . 343
J.21 Condition Register AND with Complement . 343
J.22 Condition Register OR with Complement . 344
J.23 Move Condition Register Field . 344

Fixed Point Arithmetic pseudocode 345
J.24 Add Immediate . 345
J.25 Add Immediate Shifted . 345
J.26 Add PC Immediate Shifted . 345
J.27 Add . 346
J.28 Subtract From . 346
J.29 Add Immediate Carrying . 346
J.30 Add Immediate Carrying and Record . 346
J.31 Subtract From Immediate Carrying . 347
J.32 Add Carrying . 347
J.33 Subtract From Carrying . 347
J.34 Add Extended . 348
J.35 Subtract From Extended . 348
J.36 Add to Minus One Extended . 348
J.37 Subtract From Minus One Extended . 349
J.38 Add Extended using alternate carry bit . 349
J.39 Subtract From Zero Extended . 349
J.40 Add to Zero Extended . 349

CONTENTS 19

J.41 Negate . 350
J.42 Multiply Low Immediate . 350
J.43 Multiply High Word . 350
J.44 Multiply Low Word . 351
J.45 Multiply High Word Unsigned . 351
J.46 Divide Word . 351
J.47 Divide Word Unsigned . 352
J.48 Divide Word Extended . 352
J.49 Divide Word Extended Unsigned . 353
J.50 Modulo Signed Word . 353
J.51 Modulo Unsigned Word . 354
J.52 Deliver A Random Number . 354
J.53 Multiply Low Doubleword . 354
J.54 Multiply High Doubleword . 355
J.55 Multiply High Doubleword Unsigned . 355
J.56 Multiply-Add High Doubleword VA-Form . 355
J.57 Multiply-Add High Doubleword Unsigned . 356
J.58 Multiply-Add Low Doubleword . 356
J.59 Divide Doubleword . 356
J.60 Divide Doubleword Unsigned . 357
J.61 Divide Doubleword Extended . 357
J.62 Divide Doubleword Extended Unsigned . 358
J.63 Modulo Signed Doubleword . 358
J.64 Modulo Unsigned Doubleword . 359

Fixed Point Load pseudocode 360
J.65 Load Byte and Zero . 360
J.66 Load Byte and Zero Indexed . 360
J.67 Load Byte and Zero with Update . 360
J.68 Load Byte and Zero with Update Indexed . 361
J.69 Load Halfword and Zero . 361
J.70 Load Halfword and Zero Indexed . 361
J.71 Load Halfword and Zero with Update . 361
J.72 Load Halfword and Zero with Update Indexed . 362
J.73 Load Halfword Algebraic . 362
J.74 Load Halfword Algebraic Indexed . 362
J.75 Load Halfword Algebraic with Update . 362
J.76 Load Halfword Algebraic with Update Indexed . 363
J.77 Load Word and Zero . 363
J.78 Load Word and Zero Indexed . 363
J.79 Load Word and Zero with Update . 364
J.80 Load Word and Zero with Update Indexed . 364
J.81 Load Word Algebraic . 364
J.82 Load Word Algebraic Indexed . 364
J.83 Load Word Algebraic with Update Indexed . 365
J.84 Load Doubleword . 365
J.85 Load Doubleword Indexed . 365
J.86 Load Doubleword with Update Indexed . 365
J.87 Load Doubleword with Update Indexed . 366
J.88 Load Quadword . 366
J.89 Load Halfword Byte-Reverse Indexed . 366
J.90 Load Word Byte-Reverse Indexed . 367
J.91 Load Doubleword Byte-Reverse Indexed . 367
J.92 Load Multiple Word . 367

CONTENTS 20

Fixed Point Logical pseudocode 368
J.93 AND Immediate . 368
J.94 OR Immediate . 368
J.95 AND Immediate Shifted . 368
J.96 OR Immediate Shifted . 369
J.97 XOR Immediate Shifted . 369
J.98 XOR Immediate . 369
J.99 AND . 369
J.100OR . 370
J.101XOR . 370
J.102NAND . 370
J.103NOR . 370
J.104Equivalent . 371
J.105AND with Complement . 371
J.106OR with Complement . 371
J.107Extend Sign Byte . 371
J.108Extend Sign Halfword . 372
J.109Count Leading Zeros Word . 372
J.110Count Trailing Zeros Word . 372
J.111Compare Bytes . 373
J.112Population Count Bytes . 373
J.113Population Count Words . 373
J.114Parity Doubleword . 374
J.115Parity Word . 374
J.116Extend Sign Word . 374
J.117Population Count Doubleword . 374
J.118Count Leading Zeros Doubleword . 375
J.119Count Trailing Zeros Doubleword . 375
J.120Bit Permute Doubleword . 375

Fixed Point Rotate pseudocode 377
J.121Rotate Left Word Immediate then AND with Mask . 377
J.122Rotate Left Word then AND with Mask . 377
J.123Rotate Left Word Immediate then Mask Insert . 377
J.124Rotate Left Doubleword Immediate then Clear Left . 378
J.125Rotate Left Doubleword Immediate then Clear Right . 378
J.126Rotate Left Doubleword Immediate then Clear . 378
J.127Rotate Left Doubleword then Clear Left . 379
J.128Rotate Left Doubleword then Clear Right . 379
J.129Rotate Left Doubleword Immediate then Mask Insert . 379
J.130Shift Left Word . 380
J.131Shift Right Word . 380
J.132Shift Right Algebraic Word Immediate . 380
J.133Shift Right Algebraic Word . 381
J.134Shift Left Doubleword . 381
J.135Shift Right Doubleword . 382
J.136Shift Right Algebraic Doubleword Immediate . 382
J.137Shift Right Algebraic Doubleword . 382
J.138Extend-Sign Word and Shift Left Immediate . 383

Fixed Point Store pseudocode 384
J.139Store Byte . 384
J.140Store Byte Indexed . 384
J.141Store Byte with Update . 384
J.142Store Byte with Update Indexed . 385

CONTENTS 21

J.143Store Halfword . 385
J.144Store Halfword Indexed . 385
J.145Store Halfword with Update . 385
J.146Store Halfword with Update Indexed . 386
J.147Store Word . 386
J.148Store Word Indexed . 386
J.149Store Word with Update . 386
J.150Store Word with Update Indexed . 387
J.151Store Doubleword . 387
J.152Store Doubleword Indexed . 387
J.153Store Doubleword with Update . 388
J.154Store Doubleword with Update Indexed . 388
J.155Store Quadword . 388
J.156Store Halfword Byte-Reverse Indexed . 388
J.157Store Word Byte-Reverse Indexed . 389
J.158Store Doubleword Byte-Reverse Indexed . 389
J.159Store Multiple Word . 389

Fixed Point Trap pseudocode 390
J.160Trap Word Immediate . 390
J.161Trap Word . 390
J.162Trap Doubleword Immediate . 390
J.163Trap Doubleword . 391
J.164Integer Select . 391

Special Purpose Register pseudocode 392
J.165Move To Special Purpose Register . 392
J.166Move From Special Purpose Register . 392
J.167Move to CR from XER Extended . 393
J.168Move To One Condition Register Field . 393
J.169Move To Condition Register Fields . 393
J.170Move From One Condition Register Field . 393
J.171Move From Condition Register . 394
J.172Set Boolean . 394
J.173Move To Machine State Register . 394
J.174Move To Machine State Register . 395
J.175Move From Machine State Register . 395
J.176Data Cache Block set to Zero . 395
J.177TLB Invalidate Entry . 396

String Load/Store pseudocode 397
J.178Load String Word Immediate . 397
J.179Load String Word Indexed . 397
J.180Store String Word Immediate . 398
J.181Store String Word Indexed . 398

System Call pseudocode 400
J.182System Call . 400
J.183System Call Vectored . 400
J.184Return From System Call Vectored . 401
J.185Return From Interrupt Doubleword . 401
J.186Hypervisor Return From Interrupt Doubleword . 401

Floating Point Load pseudocode 403
J.187Load Floating-Point Single . 403
J.188Load Floating-Point Single Indexed . 403

CONTENTS 22

J.189Load Floating-Point Single with Update . 403
J.190Load Floating-Point Single with Update Indexed . 404
J.191Load Floating-Point Double . 404
J.192Load Floating-Point Double Indexed . 404
J.193Load Floating-Point Double with Update . 404
J.194Load Floating-Point Double with Update Indexed . 405
J.195Load Floating-Point as Integer Word Algebraic Indexed . 405
J.196Load Floating-Point as Integer Word Zero Indexed . 405

Floating Point Store pseudocode 406
J.197Store Floating-Point Single . 406
J.198Store Floating-Point Single Indexed . 406
J.199Store Floating-Point Single with Update . 406
J.200Store Floating-Point Single with Update Indexed . 407
J.201Store Floating-Point Double . 407
J.202Store Floating-Point Double Indexed . 407
J.203Store Floating-Point Double with Update . 407
J.204Store Floating-Point Double with Update Indexed . 408
J.205Store Floating-Point as Integer Word Indexed . 408

Floating Point Move pseudocode 409
J.206Floating Move Register . 409
J.207Floating Absolute Value Register . 409
J.208Floating Negative Absolute Value Register . 409
J.209Floating Negate Register . 410
J.210Floating Copy Sign Register . 410
J.211[DRAFT] Floating Move To GPR . 410
J.212[DRAFT] Floating Move To GPR Single . 410
J.213[DRAFT] Floating Move From GPR . 411
J.214[DRAFT] Floating Move From GPR Single . 411

Floating Point Arithmetic pseudocode 412
J.215Floating Add [Single] . 412
J.216Floating Add [Double] . 412
J.217Floating Subtract [Single] . 412
J.218Floating Subtract [Double] . 413
J.219Floating Multiply [Single] . 413
J.220Floating Multiply [Double] . 413
J.221Floating Divide [Single] . 414
J.222Floating Divide [Double] . 414
J.223Floating Multiply-Add [Single] . 414
J.224Floating Multiply-Sub [Single] . 415
J.225Floating Negative Multiply-Add [Single] . 415
J.226Floating Negative Multiply-Sub [Single] . 415

Floating Point Integer Conversion pseudocode 416
J.227Floating Convert with round Signed Doubleword to Single-Precision format 416
J.228[DRAFT] Floating Convert From Integer In GPR . 416
J.229[DRAFT] Floating Convert From Integer In GPR Single . 417
J.230[DRAFT] Floating Convert To Integer In GPR . 418
J.231[DRAFT] Floating Convert To Integer In GPR Single . 420

Part II

Scalable Vectors for the Power ISA

23

Chapter 1

Fields and Forms

Power ISA Fields

These were originally taken from Power ISA v3.0B PDF, retain the Section Numbering from the original Power
ISA v3.0B Specification PDF, and are in machine-readable format that may be parsed with the following program:
power_fields.py

Some additions have been made for DRAFT Scalar instructions Forms: BM2-Form, TLI-Form and others. Other
additions are for SVP64 such as SVM-Form, SVL-Form.

1.6.1 I-FORM

|0 |6 |30|31 |
| PO | LI |AA|LK |

1.6.2 B-FORM

|0 |6 |11 |16 |30|31 |
| PO | BO| BI | BD |AA|LK |

1.6.2.1 BM-FORM

|0 |6 |10 |15 |22 |23 |31|
| PO | RS | me | sh | me | XO |Rc|

1.6.2.2 BM2-FORM

|0 |6 |11 |16 |21 |26 |27 31|
| PO | RT | RA | RB |bm |L | XO |

24

https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=src/openpower/decoder/power_fields.py;hb=HEAD

CHAPTER 1. FIELDS AND FORMS 25

1.6.2.2 CRB-FORM

0	6	9	11	14	16	19	26	31
PO	BF	msk	BFA	msk	BFB	//	XO	/
PO	BF	msk	BFA	msk	BFB	TLI	XO	TLI

1.6.2.3 CW-FORM

0	6	9	11	12	16	19	22	26	31
PO	RA	M	fmsk	BF	XO	fmap	XO		
PO	BT	M	fmsk	BF	XO	fmap	XO		
PO	BF		M	fmsk	BF	XO	fmap	XO	

1.6.2.3 CW2-FORM

|0 |6 |9 |11|12 |16 |19 |22 |26 |31|
| PO | RT |M |fmsk |BFA |XO |fmap | XO |Rc|

1.6.3 SC-FORM

|0 |6 |11 |16 |20 |27 |30 |31 |
| PO | ///| ///| // | LEV | //| 1| / |

1.6.4 D-FORM

0	6	9	10	11	16	31
PO	RT	RA	D			
PO	RT	RA	SI			
PO	RS	RA	D			
PO	RS	RA	UI			
PO	BF	/	L	RA	SI	
PO	BF	/	L	RA	UI	
PO	TO	RA	SI			
PO	FRT	RA	D			
PO	FRS	RA	D			

1.6.5 DS-FORM

0	6	11	16	30	31
PO	RT	RA	DS	XO	
PO	RS	RA	DS	XO	
PO	RSp	RA	DS	XO	
PO	FRTp	RA	DS	XO	
PO	FRSp	RA	DS	XO	

CHAPTER 1. FIELDS AND FORMS 26

1.6.6 DQ-FORM

0	6	11	16	28	29	31
PO	RTp	RA	DQ	PT		
PO	S	RA	DQ	SX	XO	
PO	T	RA	DQ	TX	XO	

V3.0B 1.6.6 DX-FORM

|0 |6 |11 |16 |26 |31
| PO | RT| d1| d0| XO|d2
| PO | FRS| d1| d0| XO|d2
| PO | FRS| D | XO|D

1.6.7 X-FORM

0	6	7	8	9	10	11	12	13	15	16	17	20	21	31
PO	RT	RA	///	XO	/									
PO	RT	RA	RB	XO	/									
PO	RT	RA	RB	XO	EH									
PO	RT	RA	NB	XO	/									
PO	RT	/	SR	///	XO	/								
PO	RT	///	RB	XO	/									
PO	RT	///	RB	XO	1									
PO	RT	///	///	XO	/									
PO	RS	RA	RB	XO	Rc									
PO	RT	RA	RB	XO	Rc									
PO	RS	RA	RB	XO	1									
PO	RS	RA	RB	XO	/									
PO	RS	RA	NB	XO	/									
PO	RS	RA	SH	XO	Rc									
PO	RS	RA	///	XO	Rc									
PO	RS	RA	///	XO	/									
PO	RS	/	SR	///	XO	/								
PO	RS	///	RB	XO	/									
PO	RS	///	///	XO	/									
PO	RS	///	L1	///	XO	/								
PO	TH	RA	RB	XO	/									
PO	BF	/	L	RA	RB	XO	/							
PO	BF	//	FRA	FRB	XO	/								
PO	BF	//	BFA	//	///	XO	/							
PO	BF	//	///	W	U	/	XO	Rc						
PO	BF	//	///	///	XO	/								
PO	TH	RA	RB	XO	/									
PO	/	CT	///	///	XO	/								
PO	/	CT	RA	RB	XO	/								
PO	///	L2	RA	RB	XO	/								
PO	///	L2	///	RB	XO	/								
PO	///	L2	///	///	XO	/								
PO	///	L2	/	E	///	XO	/							
PO	TO	RA	RB	XO	/									
PO	FRT	RA	RB	XO	/									

CHAPTER 1. FIELDS AND FORMS 27

PO	FRT	FRA	FRB	XO	/		
PO	FRTp	RA	RB	XO	/		
PO	FRT	///	FRB	XO	Rc		
PO	FRT	///	FRBp	XO	Rc		
PO	FRT	///	///	XO	Rc		
PO	FRTp	///	FRB	XO	Rc		
PO	FRTp	///	FRBp	XO	Rc		
PO	FRTp	FRA	FRBp	XO	Rc		
PO	FRTp	FRAp	FRBp	XO	Rc		
PO	BF	//	FRA	FRBp	XO	/	
PO	BF	//	FRAp	FRBp	XO	/	
PO	FRT	S		FRB	XO	Rc	
PO	FRTp	S		FRBp	XO	Rc	
PO	FRS	RA	RB	XO	/		
PO	FRSp	RA	RB	XO	/		
PO	BT	///	///	XO	Rc		
PO	///	RA	RB	XO	/		
PO	///	///	RB	XO	/		
PO	///	///	///	XO	/		
PO	///	///	E	///	XO	/	
PO	//	IH	///	///	XO	/	
PO	A	//	///	///	XO	1	
PO	A	//	R	///	///	XO	1
PO	///	RA	RB	XO	1		
PO	///	WC	///	///	XO	/	
PO	///	T	RA	RB	XO	/	
PO	VRT	RA	RB	XO	/		
PO	VRS	RA	RB	XO	/		
PO	MO	///	///	XO	/		
PO	RT	///	L3	///	XO	/	
PO	FRT	FRA	FRB	XO	Rc		
PO	FRT	FRA	RB	XO	Rc		
PO	RT	///	FRB	XO	Rc		
PO	FRT	///	RB	XO	Rc		
PO	FRT	IT	///	RB	XO	Rc	

1.6.7.1 DCT-FORM

|0 |6 |11 |16 |21 |26 |31 |
| PO | FRT | FRA | FRB | // | XO | Rc |

1.6.8 XL-FORM

0	6	9	11	14	16	19	20	21	31
PO	BT	BA	BB	XO	/				
PO	BO	BI	///	BH	XO	LK			
PO		///	S	XO	/				
PO	BF	//	BFA	//	///	XO	/		
PO	///	XO	/						
PO	OC	XO	/						

CHAPTER 1. FIELDS AND FORMS 28

1.6.9 XFX-FORM

0	6	11	12	20	21	31
PO	RT	spr	XO	/		
PO	RT	tbr	XO	/		
PO	RT	0	///	XO	/	
PO	RT	1	FXM	/	XO	/
PO	RT	dcr	XO	/		
PO	RT	pmrn	XO	/		
PO	RT	BHRBE	XO	/		
PO	DUI	DUIS	XO	/		
PO	RS	0	FXM	/	XO	/
PO	RS	1	FXM	/	XO	/
PO	RS	spr	XO	/		
PO	RS	dcr	XO	/		
PO	RS	pmrn	XO	/		

1.6.10 XFL-FORM

|0 |6|7 |15|16 |21 |31 |
| PO |L| FLM |W |FRB | XO |Rc |

1.6.11 XX1-FORM

0	6	11	16	21	31
PO	T	RA	RB	XO	TX
PO	S	RA	RB	XO	SX

1.6.12 XX2-FORM

0	6	9	11	14	16	21	30	31
PO	T	///	B	XO	BX	TX		
PO	T	///	UIM	B	XO	BX	TX	
PO	BF	//	///	B	XO	BX	/	

1.6.13 XX3-FORM

0	6	9	11	16	21	22	24	29	30	31
PO	T	A	B	XO	AX	BX	TX			
PO	T	A	B	Rc	XO	AX	BX	TX		
PO	BF	//	A	B	XO	AX	BX	/		
PO	T	A	B	XO	SHW	XO	AX	BX	TX	
PO	T	A	B	XO	DM	XO	AX	BX	TX	

1.6.14 XX4-FORM

|0 |6 |11 |16 |21 |26 |28|29 |30|31 |

CHAPTER 1. FIELDS AND FORMS 29

| PO | T | A | B | C | XO |CX|AX |BX|TX |

1.6.15 XS-FORM

|0 |6 |11 |16 |21 |30|31 |
| PO | RS | RA | sh | XO |sh|Rc |

1.6.15 XB-FORM

|0 |6 |11 |16 |22 |31 |
| PO | RT | RA | XBI | XO |Rc |

1.6.16 XO-FORM

0	6	11	13	16	21	22	31
PO	RT	RA	RB	OE	XO	Rc	
PO	RT	RA	RB	/	XO	Rc	
PO	RT	RA	RB	/	XO	/	
PO	RT	RA	///	OE	XO	Rc	
PO	RT	IT	CVM	FRB	OE	XO	Rc

1.6.17 A-FORM

0	6	11	16	21	26	31
PO	FRT	FRA	FRB	FRC	XO	Rc
PO	FRT	FRA	FRB	///	XO	Rc
PO	FRT	FRA	///	FRC	XO	Rc
PO	FRT	///	FRB	///	XO	Rc
PO	RT	RA	RB	BC	XO	/
PO	RT	RA	RB	SH	XO	Rc

1.6.18 M-FORM

0	6	11	16	21	26	31
PO	RS	RA	RB	MB	ME	Rc
PO	RS	RA	SH	MB	ME	Rc

1.6.19 MD-FORM

0	6	11	16	21	27	30	31
PO	RS	RA	sh	mb	XO	sh	Rc
PO	RS	RA	sh	me	XO	sh	Rc

CHAPTER 1. FIELDS AND FORMS 30

1.6.20 MDS-FORM

0	6	11	16	21	27	31
PO	RS	RA	RB	mb	XO	Rc
PO	RS	RA	RB	me	XO	Rc

1.6.21 VA-FORM

0	6	11	16	21	22	25	26	31
PO	RT	RA	RB	RC	XO			
PO	VRT	VRA	VRB	VRC	XO			
PO	VRT	VRA	VRB	/	SHB	XO		
PO	VRT	VRA	VRB	/	BFA	/	XO	

1.6.21.1 VA2-FORM

|0 |6 |11 |16 |21 |24|26 |31 |
| PO | RT | RA | RB | RC | XO | Rc |

1.6.22 VC-FORM

|0 |6 |11 |16 |21|22 |31|
| PO | VRT | VRA | VRB |Rc| XO |

1.6.23 VX-FORM

0	6	11	16	21	31
PO	VRT	VRA	VRB	XO	
PO	VRT	///	VRB	XO	
PO	VRT	UIM	VRB	XO	
PO	VRT	/ UIM	VRB	XO	
PO	VRT	// UIM	VRB	XO	
PO	VRT	/// UIM	VRB	XO	
PO	VRT	SIM	///	XO	
PO	VRT	///		XO	
PO		///	VRB	XO	

1.6.24 EVX-FORM

0	6	9	11	16	21	31
PO	RS	RA	RB	XO		
PO	RS	RA	UI	XO		
PO	RT	///	RB	XO		
PO	RT	RA	RB	XO		
PO	RT	RA	///	XO		
PO	RT	UI	RB	XO		
PO	BF	//	RA	RB	XO	

CHAPTER 1. FIELDS AND FORMS 31

| PO | RT | RA | UI | XO |
| PO | RT | SI | ///| XO |

1.6.25 EVS-FORM

|0 |6 |11 |16 |21 |29 |31 |
| PO | RT| RA | RB | XO |BFA |

1.6.26 Z22-FORM

0	6	9	11	16	22	31
PO	BF	//	FRA	DCM	XO	/
PO	BF	//	FRAp	DCM	XO	/
PO	BF	//	FRA	DGM	XO	/
PO	BF	//	FRAp	DGM	XO	/
PO	FRT	FRA	SH	XO	Rc	
PO	FRTp	FRAp	SH	XO	Rc	

1.6.27 Z23-FORM

0	6	11	15	16	21	23	31
PO	FRT	TE	FRB	RMC	XO	Rc	
PO	FRTp	TE	FRBp	RMC	XO	Rc	
PO	FRT	FRA	FRB	RMC	XO	Rc	
PO	RT	RA	RB	sm	XO	Rc	
PO	RT	RA	RB	CY	XO	Rc	
PO	FRTp	FRA	FRBp	RMC	XO	Rc	
PO	FRTp	FRAp	FRBp	RMC	XO	Rc	
PO	FRT	///	R	FRB	RMC	XO	Rc
PO	FRTp	///	R	FRBp	RMC	XO	Rc

1.6.29 SVI-FORM

|0 |6 |11 |16 |21 |23 |24|25|26 31|
| PO | SVG|rmm | SVd |ew |SVyx|mm|sk| XO |

1.6.30 SVL-FORM

0	6	11	16	23	24	25	26	31
PO	RT	RA	SVi	ms	vs	vf	XO	Rc
PO	RT	/	SVi	/	/	vf	XO	Rc

1.6.31 SVC-FORM

|0 |6 |9 |11 |
| PO | SCi | SCm | SCi |

CHAPTER 1. FIELDS AND FORMS 32

1.6.32 SVR-FORM

|0 |6 |9 |11 | 15 |
| PO | SCi | SCm | SRb | SRi |

1.6.33 SVD-FORM

0	6	11	16	21	31
PO	RT	RA	RC	SVD	
PO	RS	RA	RC	SVD	
PO	FRT	RA	RC	SVD	
PO	FRS	RA	RC	SVD	

1.6.34 SVDS-FORM

0	6	11	16	21	30	31
PO	RT	RA	RC	SVDS	XO	
PO	RS	RA	RC	SVDS	XO	

1.6.35 SVM-FORM

|0 |6 |11 |16 |21 |25 |26 |31 |
| PO | SVxd | SVyd | SVzd | SVrm |vf | XO |

1.6.35.1 SVM2-FORM

|0 |6 |10 |11 |16 |21 |24|25 |26 |31 |
| PO | SVo |SVyx| rmm | SVd |XO |mm|sk | XO |

1.6.36 SVRM-FORM

|0 |6 |11 |13 |15 |17 |19 |21 |22 |26 |31 |
| PO | SVme |mi0 | mi1 | mi2 | mo0 | mo1 |pst |/// | XO |

1.6.37 TLI-FORM

0	6	11	16	21	29	31
PO	RT	RA	RB	TLI	XO	Rc
PO	RT	RA	RB	TLI	XO	L

CHAPTER 1. FIELDS AND FORMS 33

1.6.38 MM-FORM

0	6	11	16	21	24	25	31
PO	FRT	FRA	FRB	FMM	XO	Rc	
PO	RT	RA	RB	MMM	/	XO	Rc

1.6.28 Instruction Fields

A (6)
Field used by the tbegin. instruction to specify an
implementation-specific function.
Field used by the tend. instruction to specify the
completion of the outer transaction and all nested
transactions.
Formats: X

AA (30)
Absolute Address.
0 The immediate field represents an address

relative to the current instruction address. For
I-form branches the effective address of the
branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruction.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form branches
the effective address of the branch target is
the BD field sign-extended to 64 bits.

Formats: B, I
AX,A (29,11:15)

Fields that are concatenated to specify a VSR to
be used as a source.
Formats: XX3, XX4

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.
Formats: XL

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.
Formats: XL

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.
Formats: A

BD (16:29)
Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with 0b00 and

CHAPTER 1. FIELDS AND FORMS 34

sign-extended to 64 bits.
Formats: B

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.
Formats: D, X, XL, XX2, XX3, Z22

BFA (22:24)
Field used to specify one of the CR fields
to be used as a source.
Formats: VA

BFA (29:31)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.
Formats: EVS

BFA (11:13)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.
Formats: X, XL

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, 'Branch Instructions'.
Formats: XL

BHRBE (11:20)
Field used to identify the BHRB entry to be used
as a source by the Move From Branch History
Rolling Buffer instruction.
Formats: XFX

BI (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.
Formats: B, XL

bm (21:25)
Field used to specify the Bit-mask Mode for bmask
Formats: BM2

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, 'Branch Instructions'.
Formats: B, XL, X, XL

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.
Formats: XL

BX,B (30,16:20)
Fields that are concatenated to specify a VSR to
be used as a source.
Formats: XX2, XX3, XX4

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 4.3.2 of Book II).
Formats: X

CVM (13:15)
Field used to specify conversion mode for

CHAPTER 1. FIELDS AND FORMS 35

integer -> floating-point conversion.
Formats: XO

CX,C (28,21:25)
Fields that are concatenated to specify a VSR to
be used as a source.
Formats: XX4

CY (21:22)
Immediate field used for addex instruction
Formats: Z23

D (16:31)
Immediate field used to specify a 16-bit signed
two's complement integer which is sign-extended
to 64 bits.
Formats: D

d0,d1,d2 (16:25,11:15,31)
Immediate fields that are concatenated to specify a
16-bit signed two's complement integer which is
sign-extended to 64 bits.
Formats: DX

dc,dm,dx (25,29,11:15)
Immediate fields that are concatenated to specify
Data Class Mask.
Formats: XX2

DCM (16:21)
Immediate field used to specify Data Class Mask.
Formats: Z22

DCMX (9:15)
Immediate field used to specify Data Class Mask.
Formats: X, XX2

DGM (16:21)
Immediate field used as the Data Group Mask.
Formats: Z22

DM (22:23)
Immediate field used by xxpermdi instruction as
doubleword permute control.
Formats: XX3

DRM (18:20)
Immediate operand field used to specify new deci-
mal floating-point rounding mode.
Formats: X

DUI (6:10)
Field used by the dnh instruction (see Book III-E).
Formats: XFX

DUIS (11:20)
Field used by the dnh instruction (see Book III-E).
Formats: XFX

DQ (16:27)
Immediate field used to specify a 12-bit signed
two's complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.
Formats: DQ

DS (16:29)
Immediate field used to specify a 14-bit signed
two's complement integer which is concatenated

CHAPTER 1. FIELDS AND FORMS 36

on the right with 0b00 and sign-extended to 64 bits.
Formats: DS

EH (31)
Field used to specify a hint in the Load and
Reserve instructions. The meaning is described in
Section 4.6.2, 'Load and Reserve and Store Con-
ditional Instructions', in Book II.
Formats: X

EO (11:12)
Expanded opcode field
Formats: X

EO (11:15)
Expanded opcode field
Formats: VX, X, XX2

EX (31)
Field used to specify Inexact form of round to
quad-precision integer.
Formats: X

ew (21:22)
Field used to specify the element width for SVI-Form
Formats: SVI

FC (16:20)
Field used to specify the function code in Load/
Store Atomic instructions.
Formats: X

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.
Formats: XFL

FMM (21:24)
Field used to specify minimum/maximum mode for fminmax[s].
Formats: MM

fmap (22:25)
Field used to specify the CR Field set/clear map for CR Weird
instructions.
Formats: CW, CW2

fmsk (12:15)
Field used to specify the CR Field mask for CR Weird instructions.
Formats: CW, CW2

FRA (11:15)
Field used to specify a FPR to be used as a
source.
Formats: A, MM, X, Z22, Z23, DCT

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.
Formats: X, Z22, Z23

FRB (16:20)
Field used to specify an FPR to be used as a
source.
Formats: A, MM, X, XFL, XO, Z23, DCT

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.
Formats: X, Z23

CHAPTER 1. FIELDS AND FORMS 37

FRC (21:25)
Field used to specify an FPR to be used as a
source.
Formats: A

FRS (6:10)
Field used to specify an FPR to be used as a
source.
Formats: D, X, DX

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.
Formats: DS, X

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.
Formats: A, D, MM, X, Z22, Z23, DCT

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.
Formats: DS, X, Z22, Z23

FXM (12:19)
Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.
Formats: XFX

IB (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.
Formats: MDS

IH (8:10)
Field used to specify a hint in the SLB Invalidate
All instruction. The meaning is described in
Section 5.9.3.2, 'SLB Management Instructions',
in Book III.
Formats: X

IMM8 (13:20)
Immediate field used to specify an 8-bit integer.
Formats: X

IS (6:10)
Immediate field used to specify a 5-bit signed inte-
ger.
Formats: MDS

IT (11:12)
Field used to specify integer type for FPR <-> GPR conversions.
Formats: X, XO

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.
Formats: XFL

L2 (9:10)
Field used by the Data Cache Block Flush instruc-
tion (see Section 4.3.2 of Book II) and also by the
Synchronize instruction (see Section 4.6.3 of Book
II).
Formats: X

CHAPTER 1. FIELDS AND FORMS 38

L (10)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.
Field used by the Compare Range Byte instruction
to indicate whether to compare against 1 or 2
ranges of bytes.
Formats: D, X

L1 (15)
Field used by the Move To Machine State Register
instruction (see Book III).
Field used by the SLB Move From Entry VSID and
SLB Move From Entry ESID instructions for imple-
mentation-specific purposes.
Formats: X

L3 (14:15)
Field used by the Deliver A Random Number
instruction (see Section 3.3.9, 'Fixed-Point Arith-
metic Instructions') to choose the random number
format.
Formats: X

L (26)
Field used to specify whether mask-in occurs in bmask
Formats: BM2

L (31)
Field used to specify whether the grevlut instruction
updates the whole GPR or the first half.
Formats: TLI

LEV (20:26)
Field used by the System Call instructions.
Formats: SC

LI (6:29)
Immediate field used to specify a 24-bit signed
two's complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.
Formats: I

LK (31)
LINK bit.
0 Do not set the Link Register.
1 Set the Link Register. The address of the

instruction following the Branch instruction is
placed into the Link Register.

Formats: B, I, XL
rmm (11:15)

Field used to specify a REMAP shape for SVI-Form
Formats: SVI

msk (9:10,14:15)
Field used by crternlogi and crbinlut to select which bits
of CR Field BF are to be modified. Requires BF to be Read-Modify-Write
Formats: CRB

MB (21:25)
Field used in M-form instructions to specify the first
1-bit of a 64-bit mask, as described in
Section 3.3.14, 'Fixed-Point Rotate and Shift

CHAPTER 1. FIELDS AND FORMS 39

Instructions' on page 101.
Formats: M

mb (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.14, 'Fixed-Point Rotate
and Shift Instructions' on page 101.
Formats: MD, MDS

me (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.14, 'Fixed-Point Rotate
and Shift Instructions' on page 101.
Formats: MD, MDS

ME (26:30)
Field used in M-form instructions to specify the last
1-bit of a 64-bit mask, as described in
Section 3.3.14, 'Fixed-Point Rotate and Shift
Instructions' on page 101.
Formats: M

mi0 (11:12)
Field used in REMAP to select the SVSHAPE for 1st input register
Formats: SVRM

mi1 (13:14)
Field used in REMAP to select the SVSHAPE for 2nd input register
Formats: SVRM

mi2 (15:16)
Field used in REMAP to select the SVSHAPE for 3rd input register
Formats: SVRM

mm (24)
Field used to specify the meaning of the rmm field for SVI-Form
and SVM2-Form
Formats: SVI, SVM2

MMM (21:23)
Field used to specify minimum/maximum mode for integer minmax.
Formats: MM

mo0 (17:18)
Field used in REMAP to select the SVSHAPE for 1st output register
Formats: SVRM

mo1 (19:20)
Field used in REMAP to select the SVSHAPE for 2nd output register
Formats: SVRM

MO (6:10)
Field used in X-form instructions to specify a sub-
set of storage accesses.
Formats: X

ms (23)
Field used in Simple-V to specify whether MVL is to be set
Formats: SVL

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.
Formats: X

OC (6:20)
Field used by the Embedded Hypervisor Privilege

CHAPTER 1. FIELDS AND FORMS 40

instruction.
Formats: XL

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.
Formats: XO

PO (0:5)
Primary opcode field.
Formats: all

PRS (14)
Field used to specify whether to invalidate pro-
cess- or partition-scoped entries for tlbie[l].
Formats: X

PS (22)
Field used to specify preferred sign for BCD opera-
tions.
Formats: VX

pst (21)
Field used in REMAP to indicate "persistence" mode (REMAP
continues to apply to multiple instructions)
Formats: SVRM

PT (28:31)
Immediate field used to specify a 4-bit unsigned
value.
Formats: DQ

R (10)
Field used by the tbegin. instruction to specify the
start of a ROT.
Formats: X

R (15)
Immediate field that specifies whether the RMC is
specifying the primary or secondary encoding
Field used to specify whether to invalidate Radix
Tree or HPT entries for tlbie[l].
Formats: X, Z23

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.
Formats: A, BM2, D, DQ, DQE, DS, M, MD, MDS, MM, TX, VA, VA2, VX, X, XO, XS, SVL, XB, TLI, Z23

RB (16:20)
Field used to specify a GPR to be used as a
source.
Formats: A, BM2, M, MDS, MM, VA, VA2, X, XO, TLI, Z23

Rc (21)
RECORD bit.
0 Do not alter the Condition Register.
1 Set Condition Register Field 6 as described in

Section 2.3.1, 'Condition Register' on
page 30.

Formats: VC, XX3
RC (21:25)

Field used to specify a GPR to be used as a
source.
Formats: VA, VA2, SVD, SVDS

Rc (31)

CHAPTER 1. FIELDS AND FORMS 41

RECORD bit.
0 Do not alter the Condition Register.
1 Set Condition Register Field 0 or Field 1 as

described in Section 2.3.1, 'Condition Regis-
ter' on page 30.

Formats: A, M, MD, MDS, MM, VA2, X, XFL, XO, XS, Z22, Z23, SVL, XB, TLI, DCT
RIC (12:13)

Field used to specify what types of entries to inval-
idate for tlbie[l].
Formats: X

RM (19:20)
Immediate operand field used to specify new
binary floating-point rounding mode.
Formats: X

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.
Formats: Z23

rmm (11:15)
REMAP Mode field for SVI-Form and SVM2-Form
Formats: SVI, SVM2

RO (31)
Round to Odd override
Formats: X

RS (6:10)
Field used to specify a GPR to be used as a
source.
Formats: D, DS, M, MD, MDS, X, XFX, XS

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.
Formats: DS, X

RT (6:10)
Field used to specify a GPR to be used as a target.
Formats: A, BM2, D, DQE, DS, DX, MM, VA, VA2, VX, X, XFX, XO, XX2, SVL, XB, TLI, Z23

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.
Formats: DQ, X

S (11)
Immediate field that specifies signed versus
unsigned conversion.
Formats: X

S (20)
Immediate field that specifies whether or not the
rfebb instruction re-enables event-based
branches.
Formats: XL

SCi (6:8)
Index to SV Context Propagation SPR
Formats: SVC, SVR

SCm (9:10)
SV Context Propagation Mode
Formats: SVC, SVR

SCi (11:31)

CHAPTER 1. FIELDS AND FORMS 42

SV Context Propagation immediate bitfield
Formats: SVC

sm (21:22)
Immediate field used for selecting operands (shift mode)
Formats: Z23

SRb (11:14)
SV REMAP byte-reversal field.
Formats: SVC

SRi (15:31)
SV REMAP immediate FIFO bitfield
Formats: SVC

SH (16:20)
Field used to specify a shift amount.
Formats: M, X

SH (16:21)
Field used to specify a shift amount.
Formats: Z22

SH (21:25)
Field used to specify a shift amount.
Formats: A

sh (30,16:20)
Fields that are concatenated to specify a shift
amount.
Formats: MD, XS

SHB (22:25)
Field used to specify a shift amount in bytes.
Formats: VA

SHW (22:23)
Field used to specify a shift amount in words.
Formats: XX3

SI (16:20)
Immediate field used to specify a 5-bit signed inte-
ger.
Formats: X

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.
Formats: D

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.
Formats: VX

sk (25)
Field used to specify dimensional skipping in svindex
Formats: SVI, SVM2

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.
Formats: X

spr (16:20,11:15)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.
Formats: XFX

SPR (11:20)
Field used to specify a Special Purpose Register

CHAPTER 1. FIELDS AND FORMS 43

for the mtspr and mfspr instructions.
Formats: XFX

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III).
Formats: X

SVd (16:20)
Immediate field used to specify the size of the REMAP dimension
in the svindex and svshape2 instructions
Formats: SVI, SVM2

SVD (21:31)
Immediate field used to specify an 11-bit signed
two's complement integer which is sign-extended
to 64 bits.
Formats: SVD

SVDS (16:29)
Immediate field used to specify a 9-bit signed
two's complement integer which is concatenated
on the right with 0b00 and sign-extended to 64 bits.
Formats: SVDS

SVG (6:10)
Field used to specify a GPR to be used as a
source for indexing.
Formats: SVI

SVi (16:22)
Simple-V immediate field for setting VL or MVL
Formats: SVL

SVme (6:10)
Simple-V "REMAP" map-enable bits (0-4)
Formats: SVRM

SVo (6:9)
Field used by the svshape2 instruction as an offset
Formats: SVM2

SVrm (21:24)
Simple-V "REMAP" Mode
Formats: SVM

SVxd (6:10)
Simple-V "REMAP" x-dimension size
Formats: SVM

SVyd (11:15)
Simple-V "REMAP" y-dimension size
Formats: SVM

SVzd (16:20)
Simple-V "REMAP" z-dimension size
Formats: SVM

SX,S (28,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.
Formats: DQ

SX,S (31,6:10)
Fields SX and S are concatenated to specify a
VSR to be used as a source.
Formats: X

T (9:10)
Field used to specify the type of invalidation done

CHAPTER 1. FIELDS AND FORMS 44

by a TLB Invalidate Local instruction (see Book
III-E).
Formats: X

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 6.1 of Book II).
Formats: X

TE (11:15)
Immediate field that specifies a DFP exponent.
Formats: Z23

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 4.3.2 of Book
II).
Formats: X

TLI (21:28)
Field used by the ternlogi instruction as the
look-up table.
Formats: TLI

TLI (21:25,19:20,31)
Field used by the crternlogi instruction as the
look-up table.
Formats: CRB

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in
Section 3.3.10.1, 'Character-Type Compare
Instructions' on page 87.
Formats: D, X

TX,T (28,6:10)
Fields that are concatenated to specify a VSR to
be used as either a target.
Formats: DQ

TX,T (31,6:10)
Fields that are concatenated to specify a VSR to
be used as either a target or a source.
Formats: X, XX2, XX3, XX4

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.
Formats: X

UI (16:20)
Immediate field used to specify a 5-bit unsigned
integer.
Formats: TX

UI (16:31)
Immediate field used to specify a 16-bit unsigned
integer.
Formats: D

UIM (11:15)
Immediate field used to specify a 5-bit unsigned
integer.
Formats: VX, X

UIM (12:15)
Immediate field used to specify a 4-bit unsigned

CHAPTER 1. FIELDS AND FORMS 45

integer.
Formats: VX, XX2

UIM (13:15)
Immediate field used to specify a 3-bit unsigned
integer.
Formats: VX

UIM (14:15)
Immediate field used to specify a 2-bit unsigned
integer.
Formats: VX, XX2

VRA (11:15)
Field used to specify a VR to be used as a source.
Formats: VA, VC, VX

VRB (16:20)
Field used to specify a VR to be used as a source.
Formats: VA, VC, VX

VRC (21:25)
Field used to specify a VR to be used as a source.
Formats: VA

VRS (6:10)
Field used to specify a VR to be used as a source.
Formats: DS, X

VRT (6:10)
Field used to specify a VR to be used as a target.
Formats: DS, VA, VC, VX, X

vf (25)
Field used in Simple-V to specify whether "Vertical" Mode is set
Formats: SVL, SVM

vs (24)
Field used in Simple-V to specify whether VL is to be set
Formats: SVL

W (15)
Field used by the mtfsfi and mtfsf instructions to
specify the target word in the FPSCR.
Formats: X, XFL

WC (9:10)
Field used to specify the condition or conditions
that cause instruction execution to resume after
executing a wait instruction (see Section 4.6.4 of
Book II).
Formats: X

XBI (21:24)
Field used to specify a bit in the XER.
Formats: MDS, MDS, TX

XBI (16:21)
Field used to specify a 6-bit unsigned immediate for bit manipulation
instructions, such as grevi.
Formats: XB

XO (21:23,26:31)
Extended opcode field.
Formats: SVM2

XO (21,23:31)
Extended opcode field.
Formats: VX

XO (21:24,26:28)

CHAPTER 1. FIELDS AND FORMS 46

Extended opcode field.
Formats: XX2

XO (21:24:28)
Extended opcode field.
Formats: XX3

XO (21:28)
Extended opcode field.
Formats: XX3

XO (21:29)
Extended opcode field.
Formats: XS, XX2

XO (21:30)
Extended opcode field.
Formats: X, XFL, XFX, XL

XO (21:31)
Extended opcode field.
Formats: VX

XO (22:30)
Extended opcode field.
Formats: XO, XX3, Z22, XB

XO (22:31)
Extended opcode field.
Formats: VC

XO (23:30)
Extended opcode field.
Formats: X, Z23

XO (25:30)
Extended opcode field.
Formats: MM, TX

XO (26:27)
Extended opcode field.
Formats: XX4

XO (26:30)
Extended opcode field.
Formats: A, DX, VA2, SVL, CRB, DCT

XO (26:31)
Extended opcode field.
Formats: VA, SVM, SVRM, SVI

XO (27:29)
Extended opcode field.
Formats: MD

XO (27:30)
Extended opcode field.
Formats: MDS

XO (27:31)
Extended opcode field.
Formats: BM2

XO (29:31)
Extended opcode field.
Formats: DQ

XO (29:30)
Extended opcode field.
Formats: TLI

XO (30)
Extended opcode field.

CHAPTER 1. FIELDS AND FORMS 47

Formats: SC
XO (30:31)

Extended opcode field.
Formats: DQE, DS, SC

SVyx (23)
Field used to specify loop dimension order in svindex
Formats: SVI

SVyx (10)
Field used to specify loop dimension order in svshape2
Formats: SVM2

Chapter 2

Scalable Vectors for the Power ISA

[[!tag standards]]

Obligatory Dilbert:

Links:

• https://bugs.libre-soc.org/show_bug.cgi?id=213
• https://youtu.be/ZQ5hw9AwO1U walkthrough video (19jun2022)
• https://ftp.libre-soc.org/simple_v_spec.pdf PDF version of this DRAFT specification

SV is in DRAFT STATUS. SV has not yet been submitted to the OpenPOWER Foundation ISA WG for
review.

===

2.1 Scalable Vectors for the Power ISA

SV is designed as a strict RISC-paradigm Scalable Vector ISA for Hybrid 3D CPU GPU VPU workloads. As
such it brings features normally only found in Cray Supercomputers (Cray-1, NEC SX-Aurora) and in GPUs,
but keeps strictly to a Simple RISC principle of leveraging a Scalar ISA, exclusively using “Prefixing”. Not
one single actual explicit Vector opcode exists in SV, at all. It is suitable for low-power Embedded and
DSP Workloads as much as it is for power-efficient Supercomputing.

Fundamental design principles:

• Taking the simplicity of the RISC paradigm and applying it strictly and uniformly to create a Scalable
Vector ISA.

• Effectively a hardware for-loop, pausing PC, issuing multiple scalar operations
• Preserving the underlying scalar execution dependencies as if the for-loop had been expanded as actual

scalar instructions (termed “preserving Program Order”)
• Specifically designed to be Precise-Interruptible at all times (many Vector ISAs have operations which,

due to higher internal accuracy or other complexity, must be effectively atomic only for the full Vector
operation’s duration, adversely affecting interrupt response latency, or be abandoned and started again)

• Augments (“tags”) existing instructions, providing Vectorisation “context” rather than adding new instruc-
tions.

• Strictly does not interfere with or alter the non-Scalable Power ISA in any way
• In the Prefix space, does not modify or deviate from the underlying scalar Power ISA unless it provides

significant performance or other advantage to do so in the Vector space (dropping the “sticky” characteristics
of XER.SO and CR0.SO for example)

• Designed for Supercomputing: avoids creating significant sequential dependency hazards, allowing standard
high performance superscalar multi-issue micro-architectures to be leveraged.

48

https://bugs.libre-soc.org/show_bug.cgi?id=213
https://youtu.be/ZQ5hw9AwO1U
https://ftp.libre-soc.org/simple_v_spec.pdf

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 49

• Divided into Compliancy Levels to reduce cost of implementation for specific needs.

Advantages of these design principles:

• Simplicity of introduction and implementation on top of the existing Power ISA without disruption.
• It is therefore easy to create a first (and sometimes only) implementation as literally a for-loop in hardware,

simulators, and compilers.
• Hardware Architects may understand and implement SV as being an extra pipeline stage, inserted between

decode and issue, that is a simple for-loop issuing element-level sub-instructions.
• More complex HDL can be done by repeating existing scalar ALUs and pipelines as blocks and leveraging

existing Multi-Issue Infrastructure
• As (mostly) a high-level “context” that does not (significantly) deviate from scalar Power ISA and, in

its purest form being “a for loop around scalar instructions”, it is minimally-disruptive and consequently
stands a reasonable chance of broad community adoption and acceptance

• Completely wipes not just SIMD opcode proliferation off the map (SIMD is O(Nˆ6) opcode proliferation)
but off of Vectorisation ISAs as well. No more separate Vector instructions.

Comparative instruction count:

• ARM NEON SIMD: around 2,000 instructions, prerequisite: ARM Scalar.
• ARM SVE: around 4,000 instructions, prerequisite: NEON and ARM Scalar
• ARM SVE2: around 1,000 instructions, prerequisite: SVE, NEON, and ARM Scalar for a grand total of

well over 7,000 instructions.
• Intel AVX-512: around 4,000 instructions, prerequisite AVX, AVX2, AVX-128 and AVX-256 which in turn

critically rely on the rest of x86, for a grand total of well over 10,000 instructions.
• RISV-V RVV: 192 instructions, prerequisite 96 Scalar RV64GC instructions
• SVP64: six instructions, two of which are in the same space (svshape, svshape2), with 24-bit prefix-

ing of prerequisite SFS (150) or SFFS (214) Compliancy Subsets. There are no dedicated Vector
instructions, only Scalar-prefixed.

Comparative Basic Design Principle:

• ARM NEON and VSX: PackedSIMD. No instruction-overloaded meaning (every instruction is unique for a
given register bitwidth, guaranteeing binary interoperability)

• Intel AVX-512 (and below): Hybrid Packed-Predicated SIMD with no instruction-overloading, guaranteeing
binary interoperability but at the same time penalising the ISA with runaway opcode proliferation.

• ARM SVE/SVE2: Hybrid Packed-Predicated SIMD with instruction-overloading that destroys binary
interoperability. This is hidden behind the misuse of the word “Scalable” and is permitted under
License by “Silicon Partners”.

• RISC-V RVV: Cray-style Scalable Vector but with instruction-overloading permitted by the specifica-
tion that destroys binary interoperability.

• SVP64: Cray-style Scalable Vector with no instruction-overloaded meanings. The regfile numbers and
bitwidths shall not change in a future revision (for the same instruction encoding): “Silicon Partner”
Scaling is prohibited, in order to guarantee binary interoperability. Future revisions of SVP64 may extend
VSX instructions to achieve larger regfiles, and non-interoperability on the same will likewise be prohibited.

SV comprises several {Compliancy Levels} suited to Embedded, Energy efficient High-Performance Compute,
Distributed Computing and Advanced Computational Supercomputing. The Compliancy Levels are arranged
such that even at the bare minimum Level, full Soft-Emulation of all optional and future features is possible.

2.2 Sub-pages

Pages being developed and examples

• {Exevutive Summary}
• {Overview Chapter} explaining the basics.
• {Compliancy Levels} for minimum subsets through to Advanced Supercomputing.
• [[sv/implementation]] implementation planning and coordination

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 50

• [[sv/po9_encoding]] a new DRAFT 64-bit space similar to EXT1xx, introducing new areas EXT232-63
and EXT300-363

• {SVP64 Chapter} contains the packet-format only, the {SVP64 Appendix} contains explanations and
further details

• [[sv/svp64-single]] still under development
• {SVP64 Quirks} things in SVP64 that slightly break the rules or are not immediately apparent despite the

RISC paradigm
• {SVP64 Augmentation Table} autogenerated table of SVP64 decoder augmentation
• {SPRs} SPRs
• [[sv/rfc]] RFCs to the OPF ISA WG

SVP64 “Modes”:

• For condition register operations see {Condition Register Fields Mode} - SVP64 Condition Register ops:
Guidelines on Vectorisation of any v3.0B base operations which return or modify a Condition Register bit
or field.

• For LD/ST Modes, see {Load/Store Mode}.
• For Branch modes, see {Branch Mode} - SVP64 Conditional Branch behaviour: All/Some Vector CRs
• For arithmetic and logical, see {Arithmetic Mode}
• {Pack / Unpack} pack/unpack move to and from vec2/3/4, actually an RM.EXTRA Mode and a {REMAP

subsystem} mode

Core SVP64 instructions:

• {setvl instruction} the Cray-style “Vector Length” instruction
• svremap, svindex and svshape: part of {REMAP subsystem} “Remapping” for Matrix Multiply, DCT/FFT

and RGB-style “Structure Packing” as well as general-purpose Indexing. Also describes associated SPRs.
• {svstep instruction} Key stepping instruction, primarily for Vertical-First Mode and also providing

traditional “Vector Iota” capability.

Please note: there are only six instructions in the whole of SV. Beyond this point are additional Scalar
instructions related to specific workloads that have nothing to do with the SV Specification

2.3 Stability Guarantees in Simple-V

Providing long-term stability in an ISA is extremely challenging but critically important. It requires certain
guarantees to be provided.

• Firstly: that instructions will never be ambiguously-defined.
• Secondly, that no instruction shall change meaning to produce different results on different hardware

(present or future).
• Thirdly, that Scalar “defined words” (32 bit instruction encodings) if Vectorised will also always be

implemented as identical Scalar instructions (the sole semi-exception being Vectorised Branch-Conditional)
• Fourthly, that implementors are not permitted to either add arbitrary features nor implement features in

an incompatible way. (Performance may differ, but differing results are not permitted).
• Fifthly, that any part of Simple-V not implemented by a lower Compliancy Level is required to raise an

illegal instruction trap (allowing soft-emulation), including if Simple-V is not implemented at all.
• Sixthly, that any UNDEFINED behaviour for practical implementation reasons is clearly documented for both

programmers and hardware implementors.

In particular, given the strong recent emphasis and interest in “Scalable Vector” ISAs, it is most unfortunate that
both ARM SVE and RISC-V RVV permit the exact same instruction to produce different results on different
hardware depending on a “Silicon Partner” hardware choice. This choice catastrophically and irrevocably
causes binary non-interoperability despite being a “feature”. Explained in https://m.youtube.com/watch?v=
HNEm8zmkjBU it is the exact same binary-incompatibility issue faced by Power ISA on its 32- to 64-bit transition:
32-bit hardware was unable to trap-and-emulate 64-bit binaries because the opcodes were (are) the same.

https://openpower.foundation/isarfc/
https://m.youtube.com/watch?v=HNEm8zmkjBU
https://m.youtube.com/watch?v=HNEm8zmkjBU

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 51

It is therefore guaranteed that extensions to the register file width and quantity in Simple-V shall only be made
in future by explicit means, ensuring binary compatibility.

2.4 Optional Scalar instructions

Additional Instructions for specific purposes (not SVP64)

All of these instructions below have nothing to do with SV. They are all entirely designed as Scalar instructions
that, as Scalar instructions, stand on their own merit. Considerable lengths have been made to provide
justifications for each of these Scalar instructions in a Scalar context, completely independently of SVP64.

Some of these Scalar instructions happen also designed to make Scalable Vector binaries more efficient, such as
the crweird group. Others are to bring the Scalar Power ISA up-to-date within specific workloads, such as a
JavaScript Rounding instruction (which saves 32 scalar instructions including seven branch instructions). None
of them are strictly necessary but performance and power consumption may be (or, is already) compromised in
certain workloads and use-cases without them.

Vector-related but still Scalar:

• {Swizzle Move} vec2/3/4 Swizzles (RGBA, XYZW) for 3D and CUDA. designed as a Scalar instruction.
• {SV Vector ops} scalar operations needed for supporting vectors
• {CR Weird ops} scalar instructions needed for effective predication

Stand-alone Scalar Instructions:

• {Bitmanip ops}
• [[sv/fcvt]] FP Conversion (due to OpenPOWER Scalar FP32)
• {FP Class ops} detect class of FP numbers
• {FP/Int Conversion ops} Move and convert GPR <-> FPR, needed for !VSX
• {Audio and Video Opcodes} scalar opcodes for Audio/Video
• [[prefix_codes]] Decode/encode prefix-codes, used by JPEG, DEFLATE, etc.
• TODO: OpenPOWER adaptation {Transcendentals}

Twin targetted instructions (two registers out, one implicit, just like Load-with-Update).

• {Fixed Point pseudocode}
• {Floating Point pseudocode}
• {Big Integer} Operations that help with big arithmetic

Explanation of the rules for twin register targets (implicit RS, FRS) explained in SVP64 {SVP64 Appendix}

2.5 Architectural Note

This section is primarily for the ISA Working Group and for IBM in their capacity and responsibility for
allocating “Architectural Resources” (opcodes), but it is also useful for general understanding of Simple-V.

Simple-V is effectively a type of “Zero-Overhead Loop Control” to which an entire 24 bits are exclusively
dedicated in a fully RISC-abstracted manner. Within those 24-bits there are no Scalar instructions, and no
Vector instructions: there is only “Loop Control”.

This is why there are no actual Vector operations in Simple-V: all suitable Scalar Operations are Vectorised
or not at all. This has some extremely important implications when considering adding new instructions, and
especially when allocating the Opcode Space for them. To protect SVP64 from damage, a “Hard Rule” has to be
set:

Scalar Instructions must be simultaneously added in the corresponding
SVP64 opcode space with the exact same 32-bit "Defined Word" or they
must not be added at all. Likewise, instructions planned for addition

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 52

in what is considered (wrongly) to be the exclusive "Vector" domain
must correspondingly be added in the Scalar space with the exact same
32-bit "Defined Word", or they must not be added at all.

Some explanation of the above is needed. Firstly, “Defined Word” is a term used in Section 1.6.3 of the Power
ISA v3 1 Book I: it means, in short, “a 32 bit instruction”, which can then be Prefixed by EXT001 to extend it
to 64-bit (named EXT100-163). Prefixed-Prefixed (96-bit Variable-Length) encodings are prohibited in v3.1 and
they are just as prohibited in Simple-V: it’s too complex in hardware. This means that only 32-bit “Defined
Words” may be Vectorised, and in particular it means that no 64-bit instruction (EXT100-163) may ever be
Vectorised.

Secondly, the term “Vectoriseable” was used. This refers to “instructions which if SVP64-Prefixed are actually
meaningful”. sc is meaningless to Vectorise, for example, as is sync and mtmsr (there is only ever going to be
one MSR).

The problem comes if the rationale is applied, “if unused, Unvectoriseable opcodes can therefore be allocated to
alternative instructions mixing inside the SVP64 Opcode space”, which unfortunately results in huge inadviseable
complexity in HDL at the Decode Phase, attempting to discern between the two types. Worse than that, if
the alternate 64-bit instruction is Vectoriseable but the 32-bit Scalar “Defined Word” is already allocated, how
can there ever be a Scalar version of the alternate instruction? It would have to be added as a completely
different 32-bit “Defined Word”, and things go rapidly downhill in the Decoder as well as the ISA from there.

Therefore to avoid risk and long-term damage to the Power ISA:

• even Unvectoriseable “Defined Words” (mtmsr) must have the corresponding SVP64 Prefixed Space
RESERVED, permanently requiring Illegal Instruction to be raised (the 64-bit encoding corresponding to an
illegal sv.mtmsr if ever incorrectly attempted must be defined to raise an Exception)

• Even instructions that may not be Scalar (although for various practical reasons this is extremely rare
if not impossible, if not just generally “strongly discouraged”) which have no meaning or use as a 32-bit
Scalar “Defined Word”, must still have the Scalar “Defined Word” RESERVED in the scalar opcode space,
as an Illegal Instruction.

A good example of the former is mtmsr because there is only one MSR register (sv.mtmsr is meaningless, as is
sv.sc), and a good example of the latter is [[sv/mv.x]] which is so deeply problematic to add to any Scalar ISA
that it was rejected outright and an alternative route taken (Indexed REMAP).

Another good example would be Cross Product which has no meaning at all in a Scalar ISA (Cross Product as
a concept only applies to Mathematical Vectors). If any such Vector operation were ever added, it would be
critically important to reserve the exact same Scalar opcode with the exact same “Defined Word” in the Scalar
Power ISA opcode space, as an Illegal Instruction. There are good reasons why Cross Product has not been
proposed, but it serves to illustrate the point as far as Architectural Resource Allocation is concerned.

Bottom line is that whilst this seems wasteful the alternatives are a destabilisation of the Power ISA and
impractically-complex Hardware Decoders. With the Scalar Power ISA (v3.0, v3.1) already being comprehensive
in the number of instructions, keeping further Decode complexity down is a high priority.

2.6 Other Scalable Vector ISAs

These Scalable Vector ISAs are listed to aid in understanding and context of what is involved.

• Original Cray ISA http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_
Computer_Systems_Functional_Description_Jun90.pdf

• NEC SX Aurora (still in production, inspired by Cray) https://www.hpc.nec/documents/guide/pdfs/
Aurora_ISA_guide.pdf

• RISC-V RVV (inspired by Cray) https://github.com/riscv/riscv-v-spec
• MRISC32 ISA Manual (under active development) https://github.com/mrisc32/mrisc32/tree/

master/isa-manual
• Mitch Alsup’s MyISA 66000 Vector Processor ISA Manual is available from Mitch on request.

http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_Computer_Systems_Functional_Description_Jun90.pdf
http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_Computer_Systems_Functional_Description_Jun90.pdf
https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://github.com/riscv/riscv-v-spec
https://github.com/mrisc32/mrisc32/tree/master/isa-manual
https://github.com/mrisc32/mrisc32/tree/master/isa-manual

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 53

A comprehensive list of 3D GPU, Packed SIMD, Predicated-SIMD and true Scalable Vector ISAs may be found at
the {Vector ISA Comparison} page. Note: AVX-512 and SVE2 are not Vector ISAs, they are Predicated-SIMD.
Public discussions have taken place at Conferences attended by both Intel and ARM on adding a setvl instruction
which would easily make both AVX-512 and SVE2 truly “Scalable”. {ISA Comparison Table} in tabular form.

2.7 Major opcodes summary

Simple-V itself only requires six instructions with 6-bit Minor XO (bits 26-31), and the SVP64 Prefix Encoding
requires 25% space of the EXT001 Major Opcode. There are no Vector Instructions and consequently no
further opcode space is required. Even though they are currently placed in the EXT022 Sandbox, the
“Management” instructions (setvl, svstep, svremap, svshape, svindex) are designed to fit cleanly into EXT019
(exactly like addpcis) or other 5/6-bit Minor XO area (bits 25-31) that has space for Rc=1.

That said: for the target workloads for which Scalable Vectors are typically used, the Scalar ISA on which those
workloads critically rely is somewhat anaemic. The Libre-SOC Team has therefore been addressing that by
developing a number of Scalar instructions in specialist areas (Big Integer, Cryptography, 3D, Audio/Video,
DSP) and it is these which require considerable Scalar opcode space.

Please be advised that even though SV is entirely DRAFT status, there is considerable concern that because
there is not yet any two-way day-to-day communication established with the OPF ISA WG, we have no idea if
any of these are conflicting with future plans by any OPF Members. The External ISA WG RFC Process
has now been ratified but Libre-SOC may not join the OPF as an entity because it does not exist
except in name. Even if it existed it would be a conflict of interest to join the OPF, due to our
funding remit from NLnet. We therefore proceed on the basis of making public the intention to submit
RFCs once the External ISA WG RFC Process is in place and, in a wholly unsatisfactory manner have to hope
and trust that OPF ISA WG Members are reading this and take it into consideration.

Scalar Summary

As in above sections, it is emphasised strongly that Simple-V in no way critically depends on the 100 or so Scalar
instructions also being developed by Libre-SOC.

None of these Draft opcodes are intended for private custom secret proprietary usage. They are
all intended for entirely public, upstream, high-profile mass-volume day-to-day usage at the same
level as add, popcnt and fld

• bitmanip requires two major opcodes (due to 16+ bit immediates) those are currently EXT022 and EXT05.
• brownfield encoding in one of those two major opcodes still requires multiple VA-Form operations (in

greater numbers than EXT04 has spare)
• space in EXT019 next to addpcis and crops is recommended (or any other 5-6 bit Minor XO areas)
• many X-Form opcodes currently in EXT022 have no preference for a location at all, and may be moved to

EXT059, EXT019, EXT031 or other much more suitable location.
• even if ratified and even if the majority (mostly X-Form) is moved to other locations, the large immediate

sizes of the remaining bitmanip instructions means it would be highly likely these remaining instructions
would need two major opcodes. Fortuitously the v3.1 Spec states that both EXT005 and EXT009 are
available.

Additional observations

Note that there is no Sandbox allocation in the published ISA Spec for v3.1 EXT01 usage, and because SVP64 is
already 64-bit Prefixed, Prefixed-Prefixed-instructions (SVP64 Prefixed v3.1 Prefixed) would become a whopping
96-bit long instruction. Avoiding this situation is a high priority which in turn by necessity puts pressure on the
32-bit Major Opcode space.

Note also that EXT022, the Official Architectural Sandbox area available for “Custom non-approved purposes”
according to the Power ISA Spec, is under severe design pressure as it is insufficient to hold the full extent of the
instruction additions required to create a Hybrid 3D CPU-VPU-GPU. Although the wording of the Power ISA
Specification leaves open the possibility of not needing to propose ISA Extensions to the ISA WG, it is clear

CHAPTER 2. SCALABLE VECTORS FOR THE POWER ISA 54

that EXT022 is an inappropriate location for a large high-profile Extension intended for mass-volume product
deployment. Every in-good-faith effort will therefore be made to work with the OPF ISA WG to submit SVP64
via the External RFC Process.

Whilst SVP64 is only 6 instructions the heavy focus on VSX for the past 12 years has left the
SFFS Level anaemic and out-of-date compared to ARM and x86. This is very much a blessing,
as the Scalar ISA has remained clean, making it highly suited to RISC-paradigm Scalable Vector Prefixing.
Approximately 100 additional (optional) Scalar Instructions are up for proposal to bring SFFS up-to-date. None
of them require or depend on PackedSIMD VSX (or VMX).

2.8 Other

Examples experiments future ideas discussion:

• Scalar register access above r31 and CR7.
• [[sv/propagation]] Context propagation including svp64, swizzle and remap
• [[sv/masked_vector_chaining]]
• [[sv/discussion]]
• [[sv/example_dep_matrices]]
• [[sv/major_opcode_allocation]]
• [[sv/byteswap]]
• [[sv/16_bit_compressed]] experimental
• [[sv/toc_data_pointer]] experimental
• [[sv/predication]] discussion on predication concepts
• [[sv/register_type_tags]]
• [[sv/mv.x]] deprecated in favour of Indexed REMAP

Additional links:

• https://www.sigarch.org/simd-instructions-considered-harmful/
• {Vector ISA Comparison} - a list of Packed SIMD, GPU, and other Scalable Vector ISAs
• {ISA Comparison Table} - a one-off (experimental) table comparing ISAs
• [[simple_v_extension]] old (deprecated) version
• [[openpower/sv/llvm]]

https://bugs.libre-soc.org/show_bug.cgi?id=905
https://www.sigarch.org/simd-instructions-considered-harmful/

Chapter 3

Other Vector ISAs

[[!tag standards]]

3.1 Comparative analysis

These are all, deep breath, basically. . . required reading, as well as and in addition to a full and comprehensive
deep technical understanding of the Power ISA, in order to understand the depth and background on SVP64 as
a 3D GPU and VPU Extension.

I am keenly aware that each of them is 300 to 1,000 pages (just like the Power ISA itself).

This is just how it is.

Given the sheer overwhelming size and scope of SVP64 we have gone to considerable lengths to provide
justification and rationalisation for adding the various sub-extensions to the Base Scalar Power ISA.

• Scalar bitmanipulation is justifiable for the exact same reasons the extensions are justifiable for other ISAs.
The additional justification for their inclusion where some instructions are already (sort-of) present in VSX
is that VSX is not mandatory, and the complexity of implementation of VSX is too high a price to pay at
the Embedded SFFS Compliancy Level.

• Scalar FP-to-INT conversions, likewise. ARM has a javascript conversion instruction, Power ISA does not
(and it costs a ridiculous 45 instructions to implement, including 6 branches!)

• Scalar Transcendentals (SIN, COS, ATAN2, LOG) are easily justifiable for High-Performance Compute
workloads.

It also has to be pointed out that normally this work would be covered by multiple separate full-time Workgroups
with multiple Members contributing their time and resources. In RISC-V there are over sixty Technical Working
Groups https://riscv.org/community/directory-of-working-groups/

Overall the contributions that we are developing take the Power ISA out of the specialist highly-focussed market
it is presently best known for, and expands it into areas with much wider general adoption and broader uses.

OpenCL specifications are linked here, these are relevant when we get to a 3D GPU / High Performance Compute
ISA WG RFC: {Transcendentals}

(Failure to add Transcendentals to a 3D GPU is directly equivalent to willfully designing a product that is 100%
destined for commercial rejection, due to the extremely high competitive performance/watt achieved by today’s
mass-volume GPUs.)

I mention these because they will be encountered in every single commercial GPU ISA, but they’re not part of
the “Base” (core design) of a Vector Processor. Transcendentals can be added as a sub-RFC.

55

CHAPTER 3. OTHER VECTOR ISAS 56

3.2 SIMD ISAs commonly mistaken for Vector

There is considerable confusion surrounding Vector ISAs because of a mis-use of the word “Vector” in the
marketing material of most well-known Packed SIMD ISAs of the past 3 decades. These Packed SIMD ISAs
used features “inspired” from Scalable Vector ISAs.

• PackedSIMD VSX. VSX, which has the word “Vector” in its name, is “inspired” by Vector Processing but
has no “Scaling” capability, and no Predicate masking. Both these factors put pressure on developers to
use “inline assembler unrolling” and data repetition, which in turn is detrimental to both L1 Data and
Instruction Caches. Adding Predicate Masks to the PackedSIMD VSX ISA would effectively double the
number of PackedSIMD instructions (750 becomes 1,500) even if it were practical to do so (no available 32
bit encoding space).

• AVX / AVX2 / AVX128 / AVX256 / AVX512 again has the word “Vector” in its name but this in no
way makes it a Vector ISA. None of the AVX-* family are “Scalable” however there is at least Predicate
Masking in AVX-512.

• ARM NEON - accurately described as a Packed SIMD ISA in all literature.
• ARM SVE / SVE2 - not a Scalable Vector ISA, it is actually a hybrid PackedSIMD/PredicatedSIMD

ISA: with 4-operand instructions being overwrite to fit into 32-bit there was no room for a predicate mask.
The “Scaling” is, rather unfortunately, a parameter that is chosen by the Hardware Architect, rather than
the programmer. The actual “Scalar” part as far as the programmer is concerned is supposed to be the
Predicate Masks. However in practice, ARM NEON programmers have found it too hard to adapt and
have instead attempted to fit the NEON SIMD paradigm on top of SVE. This has resulted in programmers
writing multiple variants of near-identical hand-coded assembler in order to target different machines
with different hardware widths, going directly against the advice given on ARM’s developer documentation.

A good analogy explaining why “Silicon-Partner Scalability” is catastrophic is to note that the situation is
near-identical to when IBM extended Power ISA from 32 to 64-bit. Existing 32-bit systems were unable to
run or trap-and-emulate 64-bit instructions because they were the exact same opcodes and the “Silicon
Scalability” of both RVV and ARM SVE/2 is the exact same mistake, but much worse. At least IBM provided
an MSR.SF bit.

The saving grace of PackedSIMD VSX is that it did not fall to the seduction outlined in the “SIMD Considered
Harmful” article https://www.sigarch.org/simd-instructions-considered-harmful/. It is clear that it is
expected to deploy Multi-Issue to achieve high performance, which is a much cleaner approach that has not
resulted in ISA poisoning such as that suffered by x86 (AVX).

3.3 Actual 3D GPU Architectures and ISAs (all SIMD)

All of these are not Scalable Vector ISAs, they are SIMD ISAs.

• Broadcom Videocore https://github.com/hermanhermitage/videocoreiv
• Etnaviv https://github.com/etnaviv/etna_viv/tree/master/doc
• Nyuzi http://www.cs.binghamton.edu/~millerti/nyuziraster.pdf
• MALI https://github.com/cwabbott0/mali-isa-docs
• AMD https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf

https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
• MIAOW which is NOT a 3D GPU, it is a processor which happens to implement a subset of the AMDGPU

ISA (Southern Islands), aka a “GPGPU” https://miaowgpu.org/

3.4 Actual Scalar Vector Processor Architectures and ISAs

• NEC SX Aurora https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
• Cray ISA http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_Computer_

Systems_Functional_Description_Jun90.pdf

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://www.sigarch.org/simd-instructions-considered-harmful/
https://github.com/hermanhermitage/videocoreiv
https://github.com/etnaviv/etna_viv/tree/master/doc
http://www.cs.binghamton.edu/~millerti/nyuziraster.pdf
https://github.com/cwabbott0/mali-isa-docs
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
https://developer.amd.com/wp-content/resources/Vega_Shader_ISA_28July2017.pdf
https://miaowgpu.org/
https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_Computer_Systems_Functional_Description_Jun90.pdf
http://www.bitsavers.org/pdf/cray/CRAY_Y-MP/HR-04001-0C_Cray_Y-MP_Computer_Systems_Functional_Description_Jun90.pdf

CHAPTER 3. OTHER VECTOR ISAS 57

Figure 3.1: Horizontal vs Vertical

• RISC-V RVV https://github.com/riscv/riscv-v-spec
• MRISC32 ISA Manual (under active development) https://github.com/mrisc32/mrisc32/tree/

master/isa-manual
• Mitch Alsup’s MyISA 66000 Vector Processor ISA Manual is available from Mitch under NDA on direct

contact with him. It is a different approach from the others, which may be termed “Cray-Style Horizontal-
First” Vectorisation. 66000 is a Vertical-First Vector ISA with hardware-level auto-vectorisation.

• ETA-10 an extremely rare Scalable Vector Architecture from 1986, similar to the CDC Cyber 205. Only
25 machines were ever delivered. Page 3-220 of its ISA shows that it had Predicate Masks and Horizontal
Reduction. Appendix H-1 shows it is likely a Memory-to-Memory Vector Architecture, and overcame
the penalties normally associated with this by adding an explicit “Vector operand forwarding/chaining”
instruction (Page 3-69). It is however clearly Scalable, up to Vector elements of 2ˆ16.

The term Horizontal or Vertical alludes to the Matrix “Row-First” or “Column-First” technique, where:

• Horizontal-First processes all elements in a Vector before moving on to the next instruction
• Vertical-First processes ONE element per instruction, and requires loop constructs to explicitly step to the

next element.

Vector-type Support by Architecture

Architecture Horizontal Vertical
MyISA 66000 X
Cray X
SX Aurora X
RVV X
SVP64 X X

https://github.com/riscv/riscv-v-spec
https://github.com/mrisc32/mrisc32/tree/master/isa-manual
https://github.com/mrisc32/mrisc32/tree/master/isa-manual
http://50.204.185.175/collections/catalog/102641713

Chapter 4

Overview

4.1 SV Overview

SV is in DRAFT STATUS. SV has not yet been submitted to the OpenPOWER Foundation ISA WG for
review.

This document provides an overview and introduction as to why SV (a [[!wikipedia Cray]]-style Vector augmen-
tation to [[!wikipedia OpenPOWER]]) exists, and how it works.

Sponsored by NLnet under the Privacy and Enhanced Trust Programme

Links:

• This page: http://libre-soc.org/openpower/sv/overview
• FOSDEM2021 SimpleV for Power ISA
• FOSDEM2021 presentation https://www.youtube.com/watch?v=FS6tbfyb2VA
• [[discussion]] and bugreport feel free to add comments, questions.
• {Scalable Vectors for Power ISA}
• {SVP64 Chapter}
• x86 REP instruction: a useful way to quickly understand that the core of the SV concept is not new.
• Article about register tagging showing that tagging is not a new idea either. Register tags are also used in

the Mill Architecture.

Table of contents:

[[!toc]]

4.2 Introduction: SIMD and Cray Vectors

SIMD, the primary method for easy parallelism of the past 30 years in Computer Architectures, is known to
be harmful. SIMD provides a seductive simplicity that is easy to implement in hardware. With each doubling
in width it promises increases in raw performance without the complexity of either multi-issue or out-of-order
execution.

Unfortunately, even with predication added, SIMD only becomes more and more problematic with each power of
two SIMD width increase introduced through an ISA revision. The opcode proliferation, at O(Nˆ6), inexorably
spirals out of control in the ISA, detrimentally impacting the hardware, the software, the compilers and the
testing and compliance. Here are the typical dimensions that result in such massive proliferation, based on
mass-volume DSPs and Micro-Processors:

• Operation (add, mul)

58

http://libre-soc.org/openpower/sv/overview
https://fosdem.org/2021/schedule/event/the_libresoc_project_simple_v_vectorisation/
https://www.youtube.com/watch?v=FS6tbfyb2VA
https://bugs.libre-soc.org/show_bug.cgi?id=556
https://c9x.me/x86/html/file_module_x86_id_279.html
http://science.lpnu.ua/sites/default/files/journal-paper/2019/jul/17084/volum3number1text-9-16_1.pdf
https://www.sigarch.org/simd-instructions-considered-harmful/
https://www.sigarch.org/simd-instructions-considered-harmful/

CHAPTER 4. OVERVIEW 59

Figure 4.1: Single-Issue concept

• bitwidth (8, 16, 32, 64, 128)
• Conversion between bitwidths (FP16-FP32-64)
• Signed/unsigned
• HI/LO swizzle (Audio L/R channels)
• HI/LO selection on src 1
• selection on src 2
• selection on dest
• Example: AndesSTAR Audio DSP
• Saturation (Clamping at max range)

These typically are multiplied up to produce explicit opcodes numbering in the thousands on, for example the
ARC Video/DSP cores.

Cray-style variable-length Vectors on the other hand result in stunningly elegant and small loops, exceptionally
high data throughput per instruction (by one or greater orders of magnitude than SIMD), with no alarmingly
high setup and cleanup code, where at the hardware level the microarchitecture may execute from one element
right the way through to tens of thousands at a time, yet the executable remains exactly the same and the ISA
remains clear, true to the RISC paradigm, and clean. Unlike in SIMD, powers of two limitations are not involved
in the ISA or in the assembly code.

SimpleV takes the Cray style Vector principle and applies it in the abstract to a Scalar ISA in the same way
that x86 used to do its “REP” instruction. In the process, “context” is applied, allowing amongst other things a
register file size increase using “tagging” (similar to how x86 originally extended registers from 32 to 64 bit).

4.2.1 SV

The fundamentals are (just like x86 “REP”):

• The Program Counter (PC) gains a “Sub Counter” context (Sub-PC)
• Vectorisation pauses the PC and runs a Sub-PC loop from 0 to VL-1 (where VL is Vector Length)
• The [[Program Order]] of “Sub-PC” instructions must be preserved, just as is expected of instructions

ordered by the PC.
• Some registers may be “tagged” as Vectors
• During the loop, “Vector”-tagged register are incremented by one with each iteration, executing the same

instruction but with different registers
• Once the loop is completed only then is the Program Counter allowed to move to the next instruction.

Hardware (and simulator) implementors are free and clear to implement this as literally a for-loop, sitting in
between instruction decode and issue. Higher performance systems may deploy SIMD backends, multi-issue and
out-of-order execution, although it is strongly recommended to add predication capability directly into SIMD
backend units.

A typical Cray-style Scalable Vector ISA (where a SIMD one has a fixed non-negotiable static parameter instead
of a runtime-dynamic VL) performs its arithmetic as:

for i = 0 to VL-1:

CHAPTER 4. OVERVIEW 60

Figure 4.2: Multi-Issue with Predicated SIMD back-end ALUs

VPR(RT)[i] = VPR[RA][i] + VPR(RB)[i]

In Power ISA v3.0B pseudo-code form, an ADD operation in Simple-V, assuming both source and destination
have been “tagged” as Vectors, is simply:

for i = 0 to VL-1:
GPR(RT+i) = GPR(RA+i) + GPR(RB+i)

At its heart, SimpleV really is this simple. On top of this fundamental basis further refinements can be added
which build up towards an extremely powerful Vector augmentation system, with very little in the way of
additional opcodes required: simply external “context”.

x86 was originally only 80 instructions: prior to AVX512 over 1,300 additional instructions have been added,
almost all of them SIMD.

RISC-V RVV as of version 0.9 is over 188 instructions (more than the rest of RV64G combined: 80 for RV64G
and 27 for C). Over 95% of that functionality is added to Power v3.0B, by SimpleV augmentation, with around
5 to 8 instructions.

Even in Power ISA v3.0B, the Scalar Integer ISA is around 150 instructions, with IEEE754 FP adding
approximately 80 more. VSX, being based on SIMD design principles, adds somewhere in the region of 600 more.
SimpleV again provides over 95% of VSX functionality, simply by augmenting the Scalar Power ISA, and in the
process providing features such as predication, which VSX is entirely missing.

AVX512, SVE2, VSX, RVV, all of these systems have to provide different types of register files: Scalar and
Vector is the minimum. AVX512 even provides a mini mask regfile, followed by explicit instructions that handle
operations on each of them and map between all of them. SV simply not only uses the existing scalar regfiles
(including CRs), but because operations exist within Power ISA to cover interactions between the scalar regfiles
(mfcr, fcvt) there is very little that needs to be added.

In fairness to both VSX and RVV, there are things that are not provided by SimpleV:

• 128 bit or above arithmetic and other operations (VSX Rijndael and SHA primitives; VSX shuffle and
bitpermute operations)

• register files above 128 entries
• Vector lengths over 64
• 32-bit instruction lengths. {SVP64 Chapter} had to be added as 64 bit.

These limitations, which stem inherently from the adaptation process of starting from a Scalar ISA, are not
insurmountable. Over time, they may well be addressed in future revisions of SV.

CHAPTER 4. OVERVIEW 61

The rest of this document builds on the above simple loop to add:

• Vector-Scalar, Scalar-Vector and Scalar-Scalar operation (of all register files: Integer, FP and CRs)
• Traditional Vector operations (VSPLAT, VINSERT, VCOMPRESS etc)
• Predication masks (essential for parallel if/else constructs)
• 8, 16 and 32 bit integer operations, and both FP16 and BF16.
• Compacted operations into registers (normally only provided by SIMD)
• Fail-on-first (introduced in ARM SVE2)
• A new concept: Data-dependent fail-first
• A completely new concept: “Twin Predication”
• vec2/3/4 “Subvectors” and Swizzling (standard fare for 3D)

All of this is without modifying the Power v3.0B ISA, except to add “wrapping context”, similar to how v3.1B 64
Prefixes work.

4.3 Adding Scalar / Vector

The first augmentation to the simple loop is to add the option for all source and destinations to all be either
scalar or vector. As a FSM this is where our “simple” loop gets its first complexity.

function op_add(RT, RA, RB) # add not VADD!
int id=0, irs1=0, irs2=0;
for i = 0 to VL-1:
ireg[RT+id] <= ireg[RA+irs1] + ireg[RB+irs2];
if (!RT.isvec) break;
if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }
if (RB.isvec) { irs2 += 1; }

This could have been written out as eight separate cases: one each for when each of RA, RB or RT is scalar or
vector. Those eight cases, when optimally combined, result in the pseudocode above.

With some walkthroughs it is clear that the loop exits immediately after the first scalar destination result is
written, and that when the destination is a Vector the loop proceeds to fill up the register file, sequentially,
starting at RT and ending at RT+VL-1. The two source registers will, independently, either remain pointing at
RB or RA respectively, or, if marked as Vectors, will march incrementally in lockstep, producing element results
along the way, as the destination also progresses through elements.

In this way all the eight permutations of Scalar and Vector behaviour are covered, although without predication
the scalar-destination ones are reduced in usefulness. It does however clearly illustrate the principle.

Note in particular: there is no separate Scalar add instruction and separate Vector instruction and separate
Scalar-Vector instruction, and there is no separate Vector register file: it’s all the same instruction, on the
standard register file, just with a loop. Scalar happens to set that loop size to one.

The important insight from the above is that, strictly speaking, Simple-V is not really a Vectorisation scheme at
all: it is more of a hardware ISA “Compression scheme”, allowing as it does for what would normally require
multiple sequential instructions to be replaced with just one. This is where the rule that Program Order must
be preserved in Sub-PC execution derives from. However in other ways, which will emerge below, the “tagging”
concept presents an opportunity to include features definitely not common outside of Vector ISAs, and in that
regard it’s definitely a class of Vectorisation.

4.3.1 Register “tagging”

As an aside: in {SVP64 Chapter} the encoding which allows SV to both extend the range beyond r0-r31 and to
determine whether it is a scalar or vector is encoded in two to three bits, depending on the instruction.

CHAPTER 4. OVERVIEW 62

The reason for using so few bits is because there are up to four registers to mark in this way (fma, isel) which
starts to be of concern when there are only 24 available bits to specify the entire SV Vectorisation Context.
In fact, for a small subset of instructions it is just not possible to tag every single register. Under these rare
circumstances a tag has to be shared between two registers.

Below is the pseudocode which expresses the relationship which is usually applied to every register:

if extra3_mode:
spec = EXTRA3 # bit 2 s/v, 0-1 extends range

else:
spec = EXTRA2 << 1 # same as EXTRA3, shifted

if spec[2]: # vector
RA.isvec = True
return (RA << 2) | spec[0:1]

else: # scalar
RA.isvec = False
return (spec[0:1] << 5) | RA

Here we can see that the scalar registers are extended in the top bits, whilst vectors are shifted up by 2 bits, and
then extended in the LSBs. Condition Registers have a slightly different scheme, along the same principle, which
takes into account the fact that each CR may be bit-level addressed by Condition Register operations.

Readers familiar with the Power ISA will know of Rc=1 operations that create an associated post-result “test”,
placing this test into an implicit Condition Register. The original researchers who created the POWER ISA
chose CR0 for Integer, and CR1 for Floating Point. These also become Vectorised - implicitly - if the associated
destination register is also Vectorised. This allows for some very interesting savings on instruction count due to
the very same CR Vectors being predication masks.

4.4 Adding single predication

The next step is to add a single predicate mask. This is where it gets interesting. Predicate masks are a bitvector,
each bit specifying, in order, whether the element operation is to be skipped (“masked out”) or allowed. If there
is no predicate, it is set to all 1s, which is effectively the same as “no predicate”.

function op_add(RT, RA, RB) # add not VADD!
int id=0, irs1=0, irs2=0;
predval = get_pred_val(FALSE, RT); # dest mask
for i = 0 to VL-1:
if (predval & 1<<i) # predication bit test

ireg[RT+id] <= ireg[RA+irs1] + ireg[RB+irs2];
if (!RT.isvec) break;

if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }
if (RB.isvec) { irs2 += 1; }

The key modification is to skip the creation and storage of the result if the relevant predicate mask bit is clear,
but not the progression through the registers.

A particularly interesting case is if the destination is scalar, and the first few bits of the predicate are zero. The
loop proceeds to increment the Vector source registers until the first nonzero predicate bit is found, whereupon a
single Scalar result is computed, and then the loop exits. This in effect uses the predicate to perform Vector
source indexing. This case was not possible without the predicate mask. Also, interestingly, the predicate mode
1<<r3 is specifically provided as a way to select one single entry from a Vector.

If all three registers are marked as Vector then the “traditional” predicated Vector behaviour is provided. Yet,
just as before, all other options are still provided, right the way back to the pure-scalar case, as if this were a
straight Power ISA v3.0B non-augmented instruction.

CHAPTER 4. OVERVIEW 63

Single Predication therefore provides several modes traditionally seen in Vector ISAs:

• VINSERT: the predicate may be set as a single bit, the sources are scalar and the destination a vector.
• VSPLAT (result broadcasting) is provided by making the sources scalar and the destination a vector, and

having no predicate set or having multiple bits set.
• VSELECT is provided by setting up (at least one of) the sources as a vector, using a single bit in the

predicate, and the destination as a scalar.

All of this capability and coverage without even adding one single actual Vector opcode, let alone 180, 600 or
1,300!

4.5 Predicate “zeroing” mode

Sometimes with predication it is ok to leave the masked-out element alone (not modify the result) however
sometimes it is better to zero the masked-out elements. Zeroing can be combined with bit-wise ORing to build
up vectors from multiple predicate patterns: the same combining with nonzeroing involves more mv operations
and predicate mask operations. Our pseudocode therefore ends up as follows, to take the enhancement into
account:

function op_add(RT, RA, RB) # add not VADD!
int id=0, irs1=0, irs2=0;
predval = get_pred_val(FALSE, RT); # dest pred
for i = 0 to VL-1:
if (predval & 1<<i) # predication bit test

ireg[RT+id] <= ireg[RA+irs1] + ireg[RB+irs2];
if (!RT.isvec) break;

else if zeroing: # predicate failed
ireg[RT+id] = 0 # set element to zero

if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }
if (RB.isvec) { irs2 += 1; }

Many Vector systems either have zeroing or they have nonzeroing, they do not have both. This is because they
usually have separate Vector register files. However SV sits on top of standard register files and consequently
there are advantages to both, so both are provided.

4.6 Element Width overrides

All good Vector ISAs have the usual bitwidths for operations: 8/16/32/64 bit integer operations, and IEEE754
FP32 and 64. Often also included is FP16 and more recently BF16. The really good Vector ISAs have
variable-width vectors right down to bitlevel, and as high as 1024 bit arithmetic per element, as well as IEEE754
FP128.

SV has an “override” system that changes the bitwidth of operations that were intended by the original scalar
ISA designers to have (for example) 64 bit operations (only). The override widths are 8, 16 and 32 for integer,
and FP16 and FP32 for IEEE754 (with BF16 to be added in the future).

This presents a particularly intriguing conundrum given that the Power Scalar ISA was never designed with for
example 8 bit operations in mind, let alone Vectors of 8 bit.

The solution comes in terms of rethinking the definition of a Register File. The typical regfile may be considered
to be a multi-ported SRAM block, 64 bits wide and usually 32 entries deep, to give 32 64 bit registers. In c this
would be:

typedef uint64_t reg_t;
reg_t int_regfile[32]; // standard scalar 32x 64bit

CHAPTER 4. OVERVIEW 64

Figure 4.3: image

Conceptually, to get our variable element width vectors, we may think of the regfile as instead being the following
c-based data structure, where all types uint16_t etc. are in little-endian order:

#pragma(packed)
typedef union {

uint8_t actual_bytes[8];
uint8_t b[0]; // array of type uint8_t
uint16_t s[0]; // array of LE ordered uint16_t
uint32_t i[0];
uint64_t l[0]; // default Power ISA uses this

} reg_t;

reg_t int_regfile[128]; // SV extends to 128 regs

This means that Vector elements start from locations specified by 64 bit “register” but that from that location
onwards the elements overlap subsequent registers.

Here is another way to view the same concept, bearing in mind that it is assumed a LE memory order:

uint8_t reg_sram[8*128];
uint8_t *actual_bytes = ®_sram[RA*8];
if elwidth == 8:

uint8_t *b = (uint8_t*)actual_bytes;
b[idx] = result;

if elwidth == 16:
uint16_t *s = (uint16_t*)actual_bytes;
s[idx] = result;

if elwidth == 32:
uint32_t *i = (uint32_t*)actual_bytes;
i[idx] = result;

if elwidth == default:
uint64_t *l = (uint64_t*)actual_bytes;
l[idx] = result;

Starting with all zeros, setting actual_bytes[3] in any given reg_t to 0x01 would mean that:

• b[0..2] = 0x00 and b[3] = 0x01
• s[0] = 0x0000 and s[1] = 0x0001

CHAPTER 4. OVERVIEW 65

• i[0] = 0x00010000
• l[0] = 0x0000000000010000

In tabular form, starting an elwidth=8 loop from r0 and extending for 16 elements would begin at r0 and extend
over the entirety of r1:

byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7

r0 | b[0] | b[1] | b[2] | b[3] | b[4] | b[5] | b[6] | b[7] |
r1 | b[8] | b[9] | b[10] | b[11] | b[12] | b[13] | b[14] | b[15] |

Starting an elwidth=16 loop from r0 and extending for 7 elements would begin at r0 and extend partly over r1.
Note that b0 indicates the low byte (lowest 8 bits) of each 16-bit word, and b1 represents the top byte:

byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7

r0 | s[0].b0 b1 | s[1].b0 b1 | s[2].b0 b1 | s[3].b0 b1 |
r1 | s[4].b0 b1 | s[5].b0 b1 | s[6].b0 b1 | unmodified |

Likewise for elwidth=32, and a loop extending for 3 elements. b0 through b3 represent the bytes (numbered
lowest for LSB and highest for MSB) within each element word:

byte0	byte1	byte2	byte3	byte4	byte5	byte6	byte7

r0 | w[0].b0 b1 b2 b3 | w[1].b0 b1 b2 b3 |
r1 | w[2].b0 b1 b2 b3 | unmodified unmodified |

64-bit (default) elements access the full registers. In each case the register number (RT, RA) indicates the starting
point for the storage and retrieval of the elements.

Our simple loop, instead of accessing the array of regfile entries with a computed index iregs[RT+i], would
access the appropriate element of the appropriate width, such as iregs[RT].s[i] in order to access 16 bit
elements starting from RT. Thus we have a series of overlapping conceptual arrays that each start at what is
traditionally thought of as “a register”. It then helps if we have a couple of routines:

get_polymorphed_reg(reg, bitwidth, offset):
reg_t res = 0;
if (!reg.isvec): # scalar

offset = 0
if bitwidth == 8:

reg.b = int_regfile[reg].b[offset]
elif bitwidth == 16:

reg.s = int_regfile[reg].s[offset]
elif bitwidth == 32:

reg.i = int_regfile[reg].i[offset]
elif bitwidth == default: # 64

reg.l = int_regfile[reg].l[offset]
return res

set_polymorphed_reg(reg, bitwidth, offset, val):
if (!reg.isvec): # scalar

offset = 0
if bitwidth == 8:

int_regfile[reg].b[offset] = val
elif bitwidth == 16:

int_regfile[reg].s[offset] = val
elif bitwidth == 32:

int_regfile[reg].i[offset] = val
elif bitwidth == default: # 64

int_regfile[reg].l[offset] = val

CHAPTER 4. OVERVIEW 66

These basically provide a convenient parameterised way to access the register file, at an arbitrary vector element
offset and an arbitrary element width. Our first simple loop thus becomes:

for i = 0 to VL-1:
src1 = get_polymorphed_reg(RA, srcwid, i)
src2 = get_polymorphed_reg(RB, srcwid, i)
result = src1 + src2 # actual add here
set_polymorphed_reg(RT, destwid, i, result)

With this loop, if elwidth=16 and VL=3 the first 48 bits of the target register will contain three 16 bit addition
results, and the upper 16 bits will be unaltered.

Note that things such as zero/sign-extension (and predication) have been left out to illustrate the elwidth
concept. Also note that it turns out to be important to perform the operation internally at effectively an infinite
bitwidth such that any truncation, rounding errors or other artefacts may all be ironed out. This turns out
to be important when applying Saturation for Audio DSP workloads, particularly for multiply and IEEE754
FP rounding. By “infinite” this is conceptual only: in reality, the application of the different truncations and
width-extensions set a fixed deterministic practical limit on the internal precision needed, on a per-operation
basis.

Other than that, element width overrides, which can be applied to either source or destination or both, are
pretty straightforward, conceptually. The details, for hardware engineers, involve byte-level write-enable lines,
which is exactly what is used on SRAMs anyway. Compiler writers have to alter Register Allocation Tables to
byte-level granularity.

One critical thing to note: upper parts of the underlying 64 bit register are not zero’d out by a write involving a
non-aligned Vector Length. An 8 bit operation with VL=7 will not overwrite the 8th byte of the destination.
The only situation where a full overwrite occurs is on “default” behaviour. This is extremely important to
consider the register file as a byte-level store, not a 64-bit-level store.

4.6.1 Why a LE regfile?

The concept of having a regfile where the byte ordering of the underlying SRAM seems utter nonsense. Surely, a
hardware implementation gets to choose the order, right? It’s memory only where LE/BE matters, right? The
bytes come in, all registers are 64 bit and it’s just wiring, right?

Ordinarily this would be 100% correct, in both a scalar ISA and in a Cray style Vector one. The assumption in
that last question was, however, “all registers are 64 bit”. SV allows SIMD-style packing of vectors into the 64
bit registers, where one instruction and the next may interpret that very same register as containing elements of
completely different widths.

Consequently it becomes critically important to decide a byte-order. That decision was - arbitrarily - LE mode.
Actually it wasn’t arbitrary at all: it was such hell to implement BE supported interpretations of CRs and
LD/ST in LibreSOC, based on a terse spec that provides insufficient clarity and assumes significant working
knowledge of the Power ISA, with arbitrary insertions of 7-index here and 3-bitindex there, the decision to pick
LE was extremely easy.

Without such a decision, if two words are packed as elements into a 64 bit register, what does this mean? Should
they be inverted so that the lower indexed element goes into the HI or the LO word? should the 8 bytes of each
register be inverted? Should the bytes in each element be inverted? Should the element indexing loop order
be broken onto discontiguous chunks such as 32107654 rather than 01234567, and if so at what granularity of
discontinuity? These are all equally valid and legitimate interpretations of what constitutes “BE” and they all
cause merry mayhem.

The decision was therefore made: the c typedef union is the canonical definition, and its members are defined as
being in LE order. From there, implementations may choose whatever internal HDL wire order they like as long
as the results produced conform to the elwidth pseudocode.

CHAPTER 4. OVERVIEW 67

Note: it turns out that both x86 SIMD and NEON SIMD follow this convention, namely that both are implicitly
LE, even though their ISA Manuals may not explicitly spell this out

• https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/
Application-Level-Memory-Model/Endian-support/Endianness-in-Advanced-SIMD?lang=en

• https://stackoverflow.com/questions/24045102/how-does-endianness-work-with-simd-registers
• https://llvm.org/docs/BigEndianNEON.html

4.6.2 Source and Destination overrides

A minor fly in the ointment: what happens if the source and destination are over-ridden to different widths?
For example, FP16 arithmetic is not accurate enough and may introduce rounding errors when up-converted to
FP32 output. The rule is therefore set:

The operation MUST take place effectively at infinite precision:
actual precision determined by the operation and the operand widths

In pseudocode this is:

for i = 0 to VL-1:
src1 = get_polymorphed_reg(RA, srcwid, i)
src2 = get_polymorphed_reg(RB, srcwid, i)
opwidth = max(srcwid, destwid) # usually
result = op_add(src1, src2, opwidth) # at max width
set_polymorphed_reg(rd, destwid, i, result)

In reality the source and destination widths determine the actual required precision in a given ALU. The reason
for setting “effectively” infinite precision is illustrated for example by Saturated-multiply, where if the internal
precision was insufficient it would not be possible to correctly determine the maximum clip range had been
exceeded.

Thus it will turn out that under some conditions the combination of the extension of the source registers followed
by truncation of the result gets rid of bits that didn’t matter, and the operation might as well have taken place at
the narrower width and could save resources that way. Examples include Logical OR where the source extension
would place zeros in the upper bits, the result will be truncated and throw those zeros away.

Counterexamples include the previously mentioned FP16 arithmetic, where for operations such as division of
large numbers by very small ones it should be clear that internal accuracy will play a major role in influencing
the result. Hence the rule that the calculation takes place at the maximum bitwidth, and truncation follows
afterwards.

4.6.3 Signed arithmetic

What happens when the operation involves signed arithmetic? Here the implementor has to use common sense,
and make sure behaviour is accurately documented. If the result of the unmodified operation is sign-extended
because one of the inputs is signed, then the input source operands must be first read at their overridden bitwidth
and then sign-extended:

for i = 0 to VL-1:
src1 = get_polymorphed_reg(RA, srcwid, i)
src2 = get_polymorphed_reg(RB, srcwid, i)
opwidth = max(srcwid, destwid)
srces known to be less than result width
src1 = sign_extend(src1, srcwid, opwidth)
src2 = sign_extend(src2, srcwid, opwidth)
result = op_signed(src1, src2, opwidth) # at max width
set_polymorphed_reg(rd, destwid, i, result)

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Endianness-in-Advanced-SIMD?lang=en
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Endianness-in-Advanced-SIMD?lang=en
https://stackoverflow.com/questions/24045102/how-does-endianness-work-with-simd-registers
https://llvm.org/docs/BigEndianNEON.html

CHAPTER 4. OVERVIEW 68

The key here is that the cues are taken from the underlying operation.

4.6.4 Saturation

Audio DSPs need to be able to clip sound when the “volume” is adjusted, but if it is too loud and the signal
wraps, distortion occurs. The solution is to clip (saturate) the audio and allow this to be detected. In practical
terms this is a post-result analysis however it needs to take place at the largest bitwidth i.e. before a result is
element width truncated. Only then can the arithmetic saturation condition be detected:

for i = 0 to VL-1:
src1 = get_polymorphed_reg(RA, srcwid, i)
src2 = get_polymorphed_reg(RB, srcwid, i)
opwidth = max(srcwid, destwid)
unsigned add
result = op_add(src1, src2, opwidth) # at max width
now saturate (unsigned)
sat = min(result, (1<<destwid)-1)
set_polymorphed_reg(rd, destwid, i, sat)
set sat overflow
if Rc=1:

CR[i].ov = (sat != result)

So the actual computation took place at the larger width, but was post-analysed as an unsigned operation. If
however “signed” saturation is requested then the actual arithmetic operation has to be carefully analysed to see
what that actually means.

In terms of FP arithmetic, which by definition has a sign bit (so always takes place as a signed operation anyway),
the request to saturate to signed min/max is pretty clear. However for integer arithmetic such as shift (plain
shift, not arithmetic shift), or logical operations such as XOR, which were never designed to have the assumption
that its inputs be considered as signed numbers, common sense has to kick in, and follow what CR0 does.

CR0 for Logical operations still applies: the test is still applied to produce CR.eq, CR.lt and CR.gt analysis.
Following this lead we may do the same thing: although the input operations for and OR or XOR can in no
way be thought of as “signed” we may at least consider the result to be signed, and thus apply min/max range
detection -128 to +127 when truncating down to 8 bit for example.

for i = 0 to VL-1:
src1 = get_polymorphed_reg(RA, srcwid, i)
src2 = get_polymorphed_reg(RB, srcwid, i)
opwidth = max(srcwid, destwid)
logical op, signed has no meaning
result = op_xor(src1, src2, opwidth)
now saturate (signed)
sat = min(result, (1<<destwid-1)-1)
sat = max(result, -(1<<destwid-1))
set_polymorphed_reg(rd, destwid, i, sat)

Overall here the rule is: apply common sense then document the behaviour really clearly, for each and every
operation.

4.7 Quick recap so far

The above functionality pretty much covers around 85% of Vector ISA needs. Predication is provided so that
parallel if/then/else constructs can be performed: critical given that sequential if/then statements and branches
simply do not translate successfully to Vector workloads. VSPLAT capability is provided which is approximately
20% of all GPU workload operations. Also covered, with elwidth overriding, is the smaller arithmetic operations

CHAPTER 4. OVERVIEW 69

that caused ISAs developed from the late 80s onwards to get themselves into a tiz when adding “Multimedia”
acceleration aka “SIMD” instructions.

Experienced Vector ISA readers will however have noted that VCOMPRESS and VEXPAND are missing, as is
Vector “reduce” (mapreduce) capability and VGATHER and VSCATTER. Compress and Expand are covered
by Twin Predication, and yet to also be covered is fail-on-first, CR-based result predication, and Subvectors and
Swizzle.

4.7.1 SUBVL

Adding in support for SUBVL is a matter of adding in an extra inner for-loop, where register src and dest are
still incremented inside the inner part. Predication is still taken from the VL index, however it is applied to the
whole subvector:

function op_add(RT, RA, RB) # add not VADD!
int id=0, irs1=0, irs2=0;
predval = get_pred_val(FALSE, rd);
for i = 0 to VL-1:
if (predval & 1<<i) # predication uses intregs
for (s = 0; s < SUBVL; s++)
sd = id*SUBVL + s
srs1 = irs1*SUBVL + s
srs2 = irs2*SUBVL + s
ireg[RT+sd] <= ireg[RA+srs1] + ireg[RB+srs2];

if (!RT.isvec) break;
if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }
if (RB.isvec) { irs2 += 1; }

The primary reason for this is because Shader Compilers treat vec2/3/4 as “single units”. Recognising this in
hardware is just sensible.

4.8 Swizzle

Swizzle is particularly important for 3D work. It allows in-place reordering of XYZW, ARGB etc. and access of
sub-portions of the same in arbitrary order without requiring timeconsuming scalar mv instructions (scalar due
to the convoluted offsets).

Swizzling does not just do permutations: it allows arbitrary selection and multiple copying of vec2/3/4 elements,
such as XXXZ as the source operand, which will take 3 copies of the vec4 first element (vec4[0]), placing them at
positions vec4[0], vec4[1] and vec4[2], whilst the “Z” element (vec4[2]) was copied into vec4[3].

With somewhere between 10% and 30% of operations in 3D Shaders involving swizzle this is a huge saving and
reduces pressure on register files due to having to use significant numbers of mv operations to get vector elements
to “line up”.

In SV given the percentage of operations that also involve initialisation to 0.0 or 1.0 into subvector elements the
decision was made to include those:

swizzle = get_swizzle_immed() # 12 bits
for (s = 0; s < SUBVL; s++)

remap = (swizzle >> 3*s) & 0b111
if remap == 0b000: continue # skip
if remap == 0b001: break # end marker
if remap == 0b010: ireg[rd+s] <= 0.0 # constant 0
elif remap == 0b011: ireg[rd+s] <= 1.0 # constant 1

CHAPTER 4. OVERVIEW 70

else: # XYZW
sm = id*SUBVL + (remap-4)
ireg[rd+s] <= ireg[RA+sm]

Note that a value of 0b000 will leave the target subvector element untouched. This is equivalent to a predicate
mask which is built-in, in immediate form, into the {Swizzle Move} operation. mv.swizzle is rare in that it is
one of the few instructions needed to be added that are never going to be part of a Scalar ISA. Even in High
Performance Compute workloads it is unusual: it is only because SV is targetted at 3D and Video that it is
being considered.

Some 3D GPU ISAs also allow for two-operand subvector swizzles. These are sufficiently unusual, and the
immediate opcode space required so large (12 bits per vec4 source), that the tradeoff balance was decided in SV
to only add mv.swizzle.

4.9 Twin Predication

Twin Predication is cool. Essentially it is a back-to-back VCOMPRESS-VEXPAND (a multiple sequentially
ordered VINSERT). The compress part is covered by the source predicate and the expand part by the destination
predicate. Of course, if either of those is all 1s then the operation degenerates to VCOMPRESS or VEXPAND,
respectively.

function op(RT, RS):
ps = get_pred_val(FALSE, RS); # predication on src
pd = get_pred_val(FALSE, RT); # ... AND on dest
for (int i = 0, int j = 0; i < VL && j < VL;):
if (RS.isvec) while (!(ps & 1<<i)) i++;
if (RT.isvec) while (!(pd & 1<<j)) j++;
reg[RT+j] = SCALAR_OPERATION_ON(reg[RS+i])
if (RS.isvec) i++;
if (RT.isvec) j++; else break

Here’s the interesting part: given the fact that SV is a “context” extension, the above pattern can be applied to
a lot more than just MV, which is normally only what VCOMPRESS and VEXPAND do in traditional Vector
ISAs: move registers. Twin Predication can be applied to extsw or fcvt, LD/ST operations and even rlwinmi
and other operations taking a single source and immediate(s) such as addi. All of these are termed single-source,
single-destination.

LDST Address-generation, or AGEN, is a special case of single source, because elwidth overriding does not make
sense to apply to the computation of the 64 bit address itself, but it does make sense to apply elwidth overrides
to the data being accessed at that memory address.

It also turns out that by using a single bit set in the source or destination, all the sequential ordered standard
patterns of Vector ISAs are provided: VSPLAT, VSELECT, VINSERT, VCOMPRESS, VEXPAND.

The only one missing from the list here, because it is non-sequential, is VGATHER (and VSCATTER): moving
registers by specifying a vector of register indices (regs[rd] = regs[regs[rs]] in a loop). This one is tricky
because it typically does not exist in standard scalar ISAs. If it did it would be called [[sv/mv.x]]. Once
Vectorised, it’s a VGATHER/VSCATTER.

4.10 Exception-based Fail-on-first

One of the major issues with Vectorised LD/ST operations is when a batch of LDs cross a page-fault boundary.
With considerable resources being taken up with in-flight data, a large Vector LD being cancelled or unable to
roll back is either a detriment to performance or can cause data corruption.

CHAPTER 4. OVERVIEW 71

What if, then, rather than cancel an entire Vector LD because the last operation would cause a page fault,
instead truncate the Vector to the last successful element?

This is called “fail-on-first”. Here is strncpy, illustrated from RVV:

strncpy:
c.mv a3, a0 # Copy dst

loop:
setvli x0, a2, vint8 # Vectors of bytes.
vlbff.v v1, (a1) # Get src bytes
vseq.vi v0, v1, 0 # Flag zero bytes
vmfirst a4, v0 # Zero found?
vmsif.v v0, v0 # Set mask up to and including zero byte.
vsb.v v1, (a3), v0.t # Write out bytes
c.bgez a4, exit # Done
csrr t1, vl # Get number of bytes fetched
c.add a1, a1, t1 # Bump src pointer
c.sub a2, a2, t1 # Decrement count.
c.add a3, a3, t1 # Bump dst pointer
c.bnez a2, loop # Anymore?

exit:
c.ret

Vector Length VL is truncated inherently at the first page faulting byte-level LD. Otherwise, with more powerful
hardware the number of elements LOADed from memory could be dozens to hundreds or greater (memory
bandwidth permitting).

With VL truncated the analysis looking for the zero byte and the subsequent STORE (a straight ST, not a
ffirst ST) can proceed, safe in the knowledge that every byte loaded in the Vector is valid. Implementors are
even permitted to “adapt” VL, truncating it early so that, for example, subsequent iterations of loops will have
LD/STs on aligned boundaries.

SIMD strncpy hand-written assembly routines are, to be blunt about it, a total nightmare. 240 instructions is
not uncommon, and the worst thing about them is that they are unable to cope with detection of a page fault
condition.

Note: see https://bugs.libre-soc.org/show_bug.cgi?id=561

4.11 Data-dependent fail-first

Data-dependent fail-first stops at the first failure:

if Rc=0: BO = inv<<2 | 0b00 # test CR.eq bit z/nz
for i in range(VL):

predication test, skip all masked out elements.
if predicate_masked_out(i): continue # skip
result = op(iregs[RA+i], iregs[RB+i])
CRnew = analyse(result) # calculates eq/lt/gt
now test CR, similar to branch
if CRnew[BO[0:1]] != BO[2]:

VL = i+VLi # truncate: only successes allowed
break

test passed: store result (and CR?)
if not RC1: iregs[RT+i] = result
if RC1 or Rc=1: crregs[offs+i] = CRnew

This is particularly useful, again, for FP operations that might overflow, where it is desirable to end the loop
early, but also desirable to complete at least those operations that were okay (passed the test) without also

https://bugs.libre-soc.org/show_bug.cgi?id=561

CHAPTER 4. OVERVIEW 72

Figure 4.4: image

having to slow down execution by adding extra instructions that tested for the possibility of that failure, in
advance of doing the actual calculation.

The only minor downside here though is the change to VL, which in some implementations may cause pipeline
stalls.

4.12 Vertical-First Mode

This is a relatively new addition to SVP64 under development as of July 2021. Where Horizontal-First is the
standard Cray-style for-loop, Vertical-First typically executes just the one scalar element in each Vectorised
operation. That element is selected by srcstep and dststep neither of which are changed as a side-effect of
execution. Illustrating this in pseodocode, with a branch/loop. To create loops, a new instruction svstep must
be called, explicitly, with Rc=1:

loop:
sv.addi r0.v, r8.v, 5 # GPR(0+dststep) = GPR(8+srcstep) + 5
sv.addi r0.v, r8, 5 # GPR(0+dststep) = GPR(8) + 5
sv.addi r0, r8.v, 5 # GPR(0) = GPR(8+srcstep) + 5
svstep. # srcstep++, dststep++, CR0.eq = srcstep==VL
beq loop

Three examples are illustrated of different types of Scalar-Vector operations. Note that in its simplest form only
one element is executed per instruction not multiple elements per instruction. (The more advanced version of
Vertical-First mode may execute multiple elements per instruction, however the number executed must remain
a fixed quantity.)

Now that such explicit loops can increment inexorably towards VL, of course we now need a way to test if srcstep
or dststep have reached VL. This is achieved in one of two ways: {svstep instruction} has an Rc=1 mode where
CR0 will be updated if VL is reached. A standard v3.0B Branch Conditional may rely on that. Alternatively, the
number of elements may be transferred into CTR, as is standard practice in Power ISA. Here, SVP64 {Branch
Mode} have a mode which allows CTR to be decremented by the number of vertical elements executed.

CHAPTER 4. OVERVIEW 73

4.13 Instruction format

Whilst this overview shows the internals, it does not go into detail on the actual instruction format itself. There
are a couple of reasons for this: firstly, it’s under development, and secondly, it needs to be proposed to the
OpenPOWER Foundation ISA WG for consideration and review.

That said: draft pages for {setvl instruction} and {SVP64 Chapter} are written up. The setvl instruction is
pretty much as would be expected from a Cray style VL instruction: the only differences being that, firstly, the
MAXVL (Maximum Vector Length) has to be specified, because that determines - precisely - how many of the
scalar registers are to be used for a given Vector. Secondly: within the limit of MAXVL, VL is required to be
set to the requested value. By contrast, RVV systems permit the hardware to set arbitrary values of VL.

The other key question is of course: what’s the actual instruction format, and what’s in it? Bearing in mind
that this requires OPF review, the current draft is at the {SVP64 Chapter} page, and includes space for all the
different modes, the predicates, element width overrides, SUBVL and the register extensions, in 24 bits. This
just about fits into a Power v3.1B 64 bit Prefix by borrowing some of the Reserved Encoding space. The v3.1B
suffix - containing as it does a 32 bi Power instruction - aligns perfectly with SV.

Further reading is at the main {Scalable Vectors for Power ISA} page.

4.14 Conclusion

Starting from a scalar ISA - Power v3.0B - it was shown above that, with conceptual sub-loops, a Scalar ISA
can be turned into a Vector one, by embedding Scalar instructions - unmodified - into a Vector “context” using
“Prefixing”. With careful thought, this technique reaches 90% par with good Vector ISAs, increasing to 95% with
the addition of a mere handful of additional context-vectoriseable scalar instructions ([[sv/mv.x]] amongst them).

What is particularly cool about the SV concept is that custom extensions and research need not be concerned
about inventing new Vector instructions and how to get them to interact with the Scalar ISA: they are effectively
one and the same. Any new instruction added at the Scalar level is inherently and automatically Vectorised,
following some simple rules.

Chapter 5

Compliancy Levels

5.1 Simple-V Compliancy Levels

The purpose of the Compliancy Levels is to provide a documented stable base for implementors to achieve
software interoperability without requiring a high and unnecessary hardware cost unrelated to their needs. The
bare minimum requirement, particularly suited for Ultra-embedded, requires just one instruction, reservation
of SPRs, and the rest may entirely be Soft-emulated by raising Illegal Instruction traps. At the other end of
the spectrum is the full REMAP Structure Packing suitable for traditional Vector Processing workloads and
High-performance energy-efficient DSP workloads.

To achieve full soft-emulated interoperability, all implementations must, at the bare minimum, raise Illegal
Instruction traps for all SPRs including all reserved SPRs, all SVP64-related Context instructions (REMAP), as
well as for the entire SVP64 Prefix space.

Even if the Power ISA Scalar Specification states that a given Scalar instruction need not or must not raise
an illegal instruction on UNDEFINED behaviour, unimiplemented parts of SVP64 MUST* raise an illegal
instruction trap when (and only when) that same Scalar instruction is Prefixed*. It is absolutely critical to note
that when not Prefixed, under no circumstances shall the Scalar instruction deviate from the Scalar Power ISA
Specification.

Summary of Compliancy Levels, each Level includes all lower levels:

• Zero-Level: Simple-V is not implemented (at all) in hardware. This Level is required to be listed because
all capabilities of Simple-V must be Soft-emulatable.

• Ultra-embedded: setvl instruction and context-switching of SVSTATE to/from SVSRR1. Register
Files as Standard Power ISA. scalar identity implemented.

• Embedded: svstep instruction, and support for Hardware for-looping in both Horizontal-First and
Vertical-First Mode as well as Predication (Single and Twin) for the GPRs r3, r10 and r30. CR-Field-based
Predicates do not need to be added.

• Embedded DSP/AV: 128 registers, element-width overrides, and Saturation and Mapreduce/Iteration
Modes.

• High-end DSP/AV: Same as Embedded-DSP/AV except also including Indexed and Offset REMAP
capability.

• 3D/Advanced/Supercomputing: all SV Branch instructions; crweird and vector-assist instructions
(set-before-first etc); Swizzle Move instructions; Matrix, DCT/FFT and Indexing REMAP capability;
Fail-First and Predicate-Result Modes.

These requirements within each Level constitute the minimum mandatory capabilities. It is also permitted that
any Level include any part of a higher Compliancy Level. For example: an Embedded Level is permitted to
have 128 GPRs, FPRs and CR Fields, but the Compliance Tests for Embedded will only test for 32. DSP/VPU
Level is permitted to implement the DCT REMAP capability, but will not be permitted to declare meeting the

74

CHAPTER 5. COMPLIANCY LEVELS 75

3D/Advanced Level unless implementing all REMAP Capabilities.

Power ISA Compliancy Levels

The SV Compliancy Levels have nothing to do with the Power ISA Compliancy Levels (SFS, SFFS, Linux, AIX).
They are separate and independent. It is perfectly fine to implement Ultra-Embedded on AIX, and perfectly
fine to implement 3D/Advanced on SFS. Compliance with SV Levels does not convey or remove the
obligation of Compliance with SFS/SFFS/Linux/AIX Levels and vice-versa.

5.1.1 Zero-Level

This level exists to indicate the critical importance of all and any features attempted to be executed on hardware
that has no support at all for Simple-V being required to raise Illegal Exceptions. This includes existing
Power ISA Implementations: IBM POWER being the most notable.

With parts of the Power ISA being “silent executed” (hints for example), it is absolutely critical to have all
capabilities of Simple-V sit within full Illegal Instruction space of existing and future Hardware.

5.1.2 Ultra-Embedded Level

This level exists as an entry-level into SVP64, most suited to resource constrained soft cores, or Hardware
implementations where unit cost is a much higher priority than execution speed.

This level sets the bare minimum requirements, where everything with the exception of scalar identity and
the setvl instruction may be software-emulated through JIT Translation or Illegal Instruction traps. SVSTATE,
as effectively a Sub-Program-Counter, joins MSR and PC (CIA, NIA) as direct peers and must be switched on
any context-switch (Trap or Exception)

• PC is saved/restored to/from SRR0
• MSR is saved/restored to/from SRR1
• SVSTATE must also be saved/restored to/from SVSRR1

Any implementation that implements Hypervisor Mode must also correspondingly follow the Power ISA Spec
guidelines for HSRR0 and HSRR1, and must save/restore SVSTATE to/from HSVSRR1 in all circumstances
involving save/restore to/from HSRR0 and HSRR1.

Illegal Instruction Trap must be raised on:

• Any SV instructions not implemented
• any unimplemented SV Context SPRs read or written
• all unimplemented uses of the SVP64 Prefix
• non-scalar-identity SVP64 instructions

Implementors are free and clear to implement any other features of SVP64 however only by meeting all of the
mandatory requirements above will Compliance with the Ultra-Embedded Level be achieved.

Note that scalar identity is defined as being when the execution of an SVP64 Prefixed instruction is identical
in every respect to Scalar non-prefixed, i.e. as if the Prefix had not been present. Additionally all SV SPRs must
be zero and the 24-bit RM field must be zero.

5.1.3 Embedded Level

This level is more suitable for Hardware implementations where performance and power saving begins to
matter. A second instruction, svstep, used by Vertical-First Mode, is required, as is hardware-level looping in
Horizontal-First Mode. Illegal Instruction trap may not be used to emulate svstep.

CHAPTER 5. COMPLIANCY LEVELS 76

At the bare minimum, Twin and Single Predication must be supported for at least the GPRs r3, r10 and r30.
CR Field Predication may also be supported in hardware but only by also increasing the number of CR Fields
to the required total 128.

Another important aspect is that when Rc=1 is set, CR Field Vector co-results are produced. Should these
exceed CR7 (CR8-CR127) and the number of CR Fields has not been increased to 128 then an Illegal Instruction
Trap must be raised. In practical terms, to avoid this occurrence in Embedded software, MAXVL should not
exceed 8 for Arithmetic or Logical operations with Rc=1.

Zeroing on source and destination for Predicates must also be supported (sz, dz) however all other Modes
(Saturation, Fail-First, Predicate-Result, Iteration/Reduction) are entirely optional. Implementation of Element-
Width Overrides is also optional.

One of the important side-benefits of this SV Compliancy Level is that it brings Hardware-level support for
Scalar Predication (VL=MAXVL=1) to the entire Scalar Power ISA, completely without modifying the Scalar
Power ISA. The cost in software is that Predicated instructions are Prefixed to 64-bit.

5.1.4 DSP / Audio / Video Level

This level is best suited to high-performance power-efficient but specialist Compute workloads. 128 GPRs, FPRs
and CR Fields are all required, as is element-width overrides to allow data processing down to the 8-bit level.
SUBVL support (Sub-Vector vec2/3/4) is also required, as is Pack/Unpack EXTRA format (helps with Pixel
and Audio Stream Structured data)

All SVP64 Modes must be implemented in hardware: Saturation in particular is a necessity for Audio DSP work.
Reduction as well to assist with Audio/Video.

It is not mandatory for this Level to have DCT/FFT REMAP Capability in hardware but due to the high preva-
lence of DCT and FFT in Audio, Video and DSP workloads it is strongly recommended. Matrix (Dimensional)
REMAP and Swizzle may also be useful to help with 24-bit (3 byte) Structured Audio Streams and are also
recommended but not mandatory.

5.1.5 High-end DSP

In this Compliancy Level the benefits of the Offset and Index REMAP subsystem becomes worth its hardware
cost. In lower-performing DSP and A/V workloads it is not.

5.1.6 3D / Advanced / Supercomputing

This Compliancy Level is for highest performance and energy efficiency. All aspects of SVP64 must be entirely
implemented, in full, in Hardware. How that is achieved is entirely at the discretion of the implementor: there
are no hard requirements of any kind on the level of performance, just as there are none in the Vulkan(TM)
Specification.

Throughout the SV Specification however there are hints to Micro-Architects: byte-level write-enable lines on
Register Files is strongly recommended, for example, in order to avoid unnecessary Read-Modify-Write cycles
and additional Register Hazard Dependencies on fine-grained (8/16/32-bit) operations. Just as with SRAMs
multiple write-enable lines may be raised to update higher-width elements.

5.1.7 Examples

Assuming that hardware implements scalar operations only, and implements predication but not elwidth overrides:

CHAPTER 5. COMPLIANCY LEVELS 77

setvli r0, 4 # sets VL equal to 4
sv.addi r5, r0, 1 # raises an 0x700 trap
setvli r0, 1 # sets VL equal to 1
sv.addi r5, r0, 1 # gets executed by hardware
sv.addi/ew=8 r5, r0, 1 # raises an 0x700 trap
sv.ori/sm=EQ r5, r0, 1 # executed by hardware

The first sv.addi raises an illegal instruction trap because VL has been set to 4, and this is not supported.
Likewise elwidth overrides if requested always raise illegal instruction traps.

Such an implementation would qualify for the “Ultra-Embedded” SV Level. It would not qualify for the
“Embedded” level because when VL=4 an Illegal Exception is raised, and the Embedded Level requires full VL
Loop support in hardware.

[[!tag standards]]

Chapter 6

SVP64

6.1 SVP64 Zero-Overhead Loop Prefix Subsystem

• DRAFT STATUS v0.1 18sep2021 Release notes https://bugs.libre-soc.org/show_bug.cgi?id=
699

This document describes {Scalable Vectors for Power ISA} augmentation of the Power v3.0B ISA. It is in Draft
Status and will be submitted to the [[!wikipedia OpenPOWER_Foundation]] ISA WG via the External RFC
Process.

Credits and acknowledgements:

• Luke Leighton
• Jacob Lifshay
• Hendrik Boom
• Richard Wilbur
• Alexandre Oliva
• Cesar Strauss
• NLnet Foundation, for funding
• OpenPOWER Foundation
• Paul Mackerras
• Toshaan Bharvani
• IBM for the Power ISA itself

Links:

• http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001498.html>
• [[svp64/discussion]]
• {SVP64 Appendix}
• http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001650.html
• https://bugs.libre-soc.org/show_bug.cgi?id=550
• https://bugs.libre-soc.org/show_bug.cgi?id=573 TODO elwidth “infinite” discussion
• https://bugs.libre-soc.org/show_bug.cgi?id=574 Saturating description.
• https://bugs.libre-soc.org/show_bug.cgi?id=905 TODO [[sv/svp64-single]]
• https://bugs.libre-soc.org/show_bug.cgi?id=1045 External RFC ls010
• {Branch Mode} chapter
• {Load/Store Mode} chapter

Table of contents

[[!toc]]

78

https://bugs.libre-soc.org/show_bug.cgi?id=699
https://bugs.libre-soc.org/show_bug.cgi?id=699
http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001498.html
http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-December/001650.html
https://bugs.libre-soc.org/show_bug.cgi?id=550
https://bugs.libre-soc.org/show_bug.cgi?id=573
https://bugs.libre-soc.org/show_bug.cgi?id=574
https://bugs.libre-soc.org/show_bug.cgi?id=905
https://bugs.libre-soc.org/show_bug.cgi?id=1045

CHAPTER 6. SVP64 79

6.1.1 Introduction

Simple-V is a type of Vectorisation best described as a “Prefix Loop Subsystem” similar to the 5 decades-old
Zilog Z80 LDIR instruction and to the 8086 REP Prefix instruction. More advanced features are similar to the
Z80 CPIR instruction. If naively viewed one-dimensionally as an actual Vector ISA it introduces over 1.5 million
64-bit True-Scalable Vector instructions on the SFFS Subset and closer to 10 million 64-bit True-Scalable Vector
instructions if introduced on VSX. SVP64, the instruction format used by Simple-V, is therefore best viewed as
an orthogonal RISC-paradigm “Prefixing” subsystem instead.

Except where explicitly stated all bit numbers remain as in the rest of the Power ISA: in MSB0 form (the bits
are numbered from 0 at the MSB on the left and counting up as you move rightwards to the LSB end). All bit
ranges are inclusive (so 4:6 means bits 4, 5, and 6, in MSB0 order). All register numbering and element
numbering however is LSB0 ordering which is a different convention from that used elsewhere in the Power
ISA.

The SVP64 prefix always comes before the suffix in PC order and must be considered an independent “Defined
word” that augments the behaviour of the following instruction, but does not change the actual Decoding of
that following instruction. All prefixed 32-bit instructions (Defined Words) retain their non-prefixed
encoding and definition.

Two apparent exceptions to the above hard rule exist: SV Branch-Conditional operations and LD/ST-update
“Post-Increment” Mode. Post-Increment was considered sufficiently high priority (significantly reducing hot-loop
instruction count) that one bit in the Prefix is reserved for it (Note the intention to release that bit and move
Post-Increment instructions to EXT2xx, as part of {RFC ls011}). Vectorised Branch-Conditional operations
“embed” the original Scalar Branch-Conditional behaviour into a much more advanced variant that is highly
suited to High-Performance Computation (HPC), Supercomputing, and parallel GPU Workloads.

Architectural Resource Allocation note: it is prohibited to accept RFCs which fundamentally violate this hard
requirement. Under no circumstances must the Suffix space have an alternate instruction encoding allocated
within SVP64 that is entirely different from the non-prefixed Defined Word. Hardware Implementors critically
rely on this inviolate guarantee to implement High-Performance Multi-Issue micro-architectures that can sustain
100% throughput

Subset implementations in hardware are permitted, as long as certain rules are followed, allowing for full soft-
emulation including future revisions. Compliancy Subsets exist to ensure minimum levels of binary interoperability
expectations within certain environments. Details in the {SVP64 Appendix}.

6.1.2 SVP64 encoding features

A number of features need to be compacted into a very small space of only 24 bits:

• Independent per-register Scalar/Vector tagging and range extension on every register
• Element width overrides on both source and destination
• Predication on both source and destination
• Two different sources of predication: INT and CR Fields
• SV Modes including saturation (for Audio, Video and DSP), mapreduce, and fail-first mode.

Different classes of operations require different formats. The earlier sections cover the common formats and the
four separate modes follow: CR operations (crops), Arithmetic/Logical (termed “normal”), Load/Store and
Branch-Conditional.

6.1.3 Definition of Reserved in this spec.

For the new fields added in SVP64, instructions that have any of their fields set to a reserved value must
cause an illegal instruction trap, to allow emulation of future instruction sets, or for subsets of SVP64 to be
implemented in hardware and the rest emulated. This includes SVP64 SPRs: reading or writing values which are

CHAPTER 6. SVP64 80

not supported in hardware must also raise illegal instruction traps in order to allow emulation. Unless otherwise
stated, reserved values are always all zeros.

This is unlike OpenPower ISA v3.1, which in many instances does not require a trap if reserved fields are nonzero.
Where the standard Power ISA definition is intended the red keyword RESERVED is used.

6.1.4 Definition of “UnVectoriseable”

Any operation that inherently makes no sense if repeated is termed “UnVectoriseable” or “UnVectorised”.
Examples include sc or sync which have no registers. mtmsr is also classed as UnVectoriseable because there is
only one MSR.

UnVectorised instructions are required to be detected as such if Prefixed (either SVP64 or SVP64Single) and an
Illegal Instruction Trap raised.

Architectural Note: Given that a “pre-classification” Decode Phase is required (identifying whether the Suffix -
Defined Word - is Arithmetic/Logical, CR-op, Load/Store or Branch-Conditional), adding “UnVectorised” to this
phase is not unreasonable.

6.1.5 Definition of Strict Program Order

Strict Program Order is defined as giving the appearance, as far as programs are concerned, that instructions
were executed strictly in the sequence that they occurred. A “Precise” out-of-order Micro-architecture goes to
considerable lengths to ensure that this is the case.

Many Vector ISAs allow interrupts to occur in the middle of processing of large Vector operations, only under
the condition that partial results are cleanly discarded, and continuation on return from the Trap Handler will
restart the entire operation. The reason is that saving of full Architectural State is not practical.

Simple-V operates on an entirely different paradigm from traditional Vector ISAs: as a Sub-Program Counter
where “Elements” are synonymous with Scalar instructions. With this in mind it is critical for implementations
to observe Strict Element-Level Program Order at all times (often simply referred to as just “Strict Program
Order” throughout this Chapter). Any element is Interruptible and Simple-V has been carefully designed to
guarantee that Architectural State may be fully preserved and restored regardless of that same State, but it is
not necessarily guaranteed that the amount of time needed to recover will be low latency (particularly if REMAP
is active).

Interrupts still only save MSR and PC in SRR0 and SRR1 but the full SVP64 Architectural State may be saved and
restored through manual copying of SVSTATE (and the four REMAP SPRs if in use at the time) Whilst this
initially sounds unsafe in reality all that Trap Handlers (and function call stack save/restore) need do is avoid
use of SVP64 Prefixed instructions to perform the necessary save/restore of Simple-V Architectural State. This
capability also allows nested function calls to be made from inside Vertical-First Vector loops, which is very rare
for Vector ISAs.

Strict Program Order is also preserved by the Parallel Reduction REMAP Schedule, but only at the cost of
requiring the destination Vector to be used (Deterministically) to store partial progress of the Parallel Reduction.

The only major caveat for REMAP is that after an explicit change to Architectural State caused by writing to
the Simple-V SPRs, some implementations may find it easier to take longer to calculate where in a given Schedule
the re-mapping Indices were. Obvious examples include Interrupts occuring in the middle of a non-RADIX2
Matrix Multiply Schedule (5x3 by 3x3 for example), which will force implementations to perform divide and
modulo calculations.

An additional caveat involves Condition Register Fields when also used as Predicate Masks. An operation that
overwrites the same CR Fields that are simultaneously being used as a Predicate Mask is UNDEFINED behaviour
if the overwritten CR field element was needed by a subsequent Element for its Predicate Mask bit. This allows
implementations to relax some of the otherwise-draconian Register Hazards that would otherwise occur, and
to consider internal cacheing of the CR-based Predicate bits, but some implementations may not necessarily

CHAPTER 6. SVP64 81

perform pre-reading and consequently the risk of overwrite is the responsibility of the Programmer. Special care
is particularly needed here when using REMAP.

6.1.6 Register files, elements, and Element-width Overrides

The relationship between register files, elements, and element-width overrides is expressed as follows:

• register files are considered to be byte-level contiguous SRAMs, accessed exclusively in Little-Endian
Byte-Order at all times

• elements are sequential contiguous unbounded arrays starting at the “address” of any given 64-bit GPR or
FPR, numbered from 0 as the first, “spilling” into numerically-sequentially-increasing GPRs

• element-width overrides set the width of the elements in the sequentially-numbered contiguous array.

The relationship is best defined in Canonical form, below, in ANSI c as a union data structure. A key difference
is that VSR elements are bounded fixed at 128-bit, where SVP64 elements are conceptually unbounded and only
limited by the Maximum Vector Length.

Future specification note: SVP64 may be defined on top of VSRs in future. At which point VSX also gains
conceptually unbounded VSR register elements

In the Upper Compliancy Levels of SVP64 the size of the GPR and FPR Register files are expanded from 32 to
128 entries, and the number of CR Fields expanded from CR0-CR7 to CR0-CR127. (Note: A future version of
SVP64 is anticipated to extend the VSR register file).

Memory access remains exactly the same: the effects of MSR.LE remain exactly the same, affecting as they
already do and remain only on the Load and Store memory-register operation byte-order, and having nothing
to do with the ordering of the contents of register files or register-register operations.

The only major impact on Arithmetic and Logical operations is that all Scalar operations are defined, where
practical and workable, to have three new widths: elwidth=32, elwidth=16, elwidth=8. The default of elwidth=64
is the pre-existing (Scalar) behaviour which remains 100% unchanged. Thus, addi is now joined by a 32-bit,
16-bit, and 8-bit variant of addi, but the sole exclusive difference is the width. In no way is the actual addi
instruction fundamentally altered. FP Operations elwidth overrides are also defined, as explained in the {SVP64
Appendix}.

To be absolutely clear:

There are no conceptual arithmetic ordering or other changes over the
Scalar Power ISA definitions to registers or register files or to
arithmetic or Logical Operations beyond element-width subdivision

Element offset numbering is naturally LSB0-sequentially-incrementing from zero, not MSB0-
incrementing including when element-width overrides are used, at which point the elements progress through
each register sequentially from the LSB end (confusingly numbered the highest in MSB0 ordering) and progress
incrementally to the MSB end (confusingly numbered the lowest in MSB0 ordering).

When exclusively using MSB0-numbering, SVP64 becomes unnecessarily complex to both express and subsequently
understand: the required conditional subtractions from 63, 31, 15 and 7 needed to express the fact that elements
are LSB0-sequential unfortunately become a hostile minefield, obscuring both intent and meaning. Therefore
for the purposes of this section the more natural LSB0 numbering is assumed and it is left to the reader to
translate to MSB0 numbering.

The Canonical specification for how element-sequential numbering and element-width overrides is defined is
expressed in the following c structure, assuming a Little-Endian system, and naturally using LSB0 numbering
everywhere because the ANSI c specification is inherently LSB0. Note the deliberate similarity to how VSX
register elements are defined, from Figure 97, Book I, Section 6.3, Page 258:

#pragma pack
typedef union {

uint8_t actual_bytes[8];

CHAPTER 6. SVP64 82

// all of these are very deliberately unbounded arrays
// that intentionally "wrap" into subsequent actual_bytes...
uint8_t bytes[]; // elwidth 8
uint16_t hwords[]; // elwidth 16
uint32_t words[]; // elwidth 32
uint64_t dwords[]; // elwidth 64

} el_reg_t;

// ... here, as packed statically-defined GPRs.
elreg_t int_regfile[128];

// use element 0 as the destination
void get_register_element(el_reg_t* el, int gpr, int element, int width) {

switch (width) {
case 64: el->dwords[0] = int_regfile[gpr].dwords[element];
case 32: el->words[0] = int_regfile[gpr].words[element];
case 16: el->hwords[0] = int_regfile[gpr].hwords[element];
case 8 : el->bytes[0] = int_regfile[gpr].bytes[element];

}
}

// use element 0 as the source
void set_register_element(el_reg_t* el, int gpr, int element, int width) {

switch (width) {
case 64: int_regfile[gpr].dwords[element] = el->dwords[0];
case 32: int_regfile[gpr].words[element] = el->words[0];
case 16: int_regfile[gpr].hwords[element] = el->hwords[0];
case 8 : int_regfile[gpr].bytes[element] = el->bytes[0];

}
}

Example Vector-looped add operation implementation when elwidths are 64-bit:

vector-add RT, RA,RB using the "uint64_t" union member, "dwords"
for i in range(VL):

int_regfile[RT].dword[i] = int_regfile[RA].dword[i] + int_regfile[RB].dword[i]

However if elwidth overrides are set to 16 for both source and destination:

vector-add RT, RA, RB using the "uint64_t" union member "hwords"
for i in range(VL):

int_regfile[RT].hwords[i] = int_regfile[RA].hwords[i] + int_regfile[RB].hwords[i]

The most fundamental aspect here to understand is that the wrapping into subsequent Scalar GPRs that occurs
on larger-numbered elements including and especially on smaller element widths is deliberate and intentional.
From this Canonical definition it should be clear that sequential elements begin at the LSB end of any given
underlying Scalar GPR, progress to the MSB end, and then to the LSB end of the next numerically-larger Scalar
GPR. In the example above if VL=5 and RT=1 then the contents of GPR(1) and GPR(2) will be as follows. For
clarity in the table below:

• Both MSB0-ordered bitnumbering and LSB-ordered bitnumbering are shown
• The GPR-numbering is considered LSB0-ordered
• The Element-numbering (result0-result4) is LSB0-ordered
• Each of the results (result0-result4) are 16-bit
• “same” indicates “no change as a result of the Vectorised add”

| MSB0: | 0:15 | 16:31 | 32:47 | 48:63 |
| LSB0: | 63:48 | 47:32 | 31:16 | 15:0 |

CHAPTER 6. SVP64 83

|--------|---------|---------|---------|---------|
| GPR(0) | same | same | same | same |
| GPR(1) | result3 | result2 | result1 | result0 |
| GPR(2) | same | same | same | result4 |
| GPR(3) | same | same | same | same |
| ... | ... | ... | ... | ... |
| ... | ... | ... | ... | ... |

Note that the upper 48 bits of GPR(2) would not be modified due to the example having VL=5. Thus on
“wrapping” - sequential progression from GPR(1) into GPR(2) - the 5th result modifies only the bottom 16
LSBs of GPR(1).

Hardware Architectural note: to avoid a Read-Modify-Write at the register file it is strongly recommended
to implement byte-level write-enable lines exactly as has been implemented in DRAM ICs for many decades.
Additionally the predicate mask bit is advised to be associated with the element operation and alongside the
result ultimately passed to the register file. When element-width is set to 64-bit the relevant predicate mask bit
may be repeated eight times and pull all eight write-port byte-level lines HIGH. Clearly when element-width is
set to 8-bit the relevant predicate mask bit corresponds directly with one single byte-level write-enable line. It is
up to the Hardware Architect to then amortise (merge) elements together into both PredicatedSIMD Pipelines
as well as simultaneous non-overlapping Register File writes, to achieve High Performance designs. Overall it
helps to think of the register files as being much more akin to a byte-level-addressable SRAM.

If the 16-bit operation were to be followed up with a 32-bit Vectorised Operation, the exact same contents would
be viewed as follows:

| MSB0: | 0:31 | 32:63 |
LSB0:	63:32	31:0				
GPR(0)	same	same				
GPR(1)	(result3		result2)	(result1		result0)
GPR(2)	same	(same		result4)		
GPR(3)	same	same				
...				
...				

In other words, this perspective really is no different from the situation where the actual Register File is treated
as an Industry-standard byte-level-addressable Little-Endian-addressed SRAM. Note that this perspective does
not involve MSR.LE in any way shape or form because MSR.LE is directly in control of the Memory-to-Register
byte-ordering. This section is exclusively about how to correctly perceive Simple-V-Augmented Register Files.

Comparative equivalent using VSR registers

For a comparative data point the VSR Registers may be expressed in the same fashion. The c code below is
directly an expression of Figure 97 in Power ISA Public v3.1 Book I Section 6.3 page 258, after compensating for
MSB0 numbering in both bits and elements, adapting in full to LSB0 numbering, and obeying LE ordering.

Crucial to understanding why the subtraction from 1,3,7,15 is present is because the Power ISA
numbers VSX Registers elements also in MSB0 order. SVP64 very specifically numbers elements in
LSB0 order with the first element (numbered zero) being at the bitwise-numbered LSB end of the register,
where VSX does the reverse: places the numerically-highest (last-numbered) element at the LSB end of the
register.

#pragma pack
typedef union {

// these do NOT match their Power ISA VSX numbering directly, they are all reversed
// bytes[15] is actually VSR.byte[0] for example. if this convention is not
// followed then everything ends up in the wrong place
uint8_t bytes[16]; // elwidth 8, QTY 16 FIXED total
uint16_t hwords[8]; // elwidth 16, QTY 8 FIXED total
uint32_t words[4]; // elwidth 32, QTY 8 FIXED total

CHAPTER 6. SVP64 84

uint64_t dwords[2]; // elwidth 64, QTY 2 FIXED total
uint8_t actual_bytes[16]; // totals 128-bit

} el_reg_t;

elreg_t VSR_regfile[64];

static void check_num_elements(int elt, int width) {
switch (width) {

case 64: assert elt < 2;
case 32: assert elt < 4;
case 16: assert elt < 8;
case 8 : assert elt < 16;

}
}
void get_VSR_element(el_reg_t* el, int gpr, int elt, int width) {

check_num_elements(elt, width);
switch (width) {

case 64: el->dwords[0] = VSR_regfile[gpr].dwords[1-elt];
case 32: el->words[0] = VSR_regfile[gpr].words[3-elt];
case 16: el->hwords[0] = VSR_regfile[gpr].hwords[7-elt];
case 8 : el->bytes[0] = VSR_regfile[gpr].bytes[15-elt];

}
}
void set_VSR_element(el_reg_t* el, int gpr, int elt, int width) {

check_num_elements(elt, width);
switch (width) {

case 64: VSR_regfile[gpr].dwords[1-elt] = el->dwords[0];
case 32: VSR_regfile[gpr].words[3-elt] = el->words[0];
case 16: VSR_regfile[gpr].hwords[7-elt] = el->hwords[0];
case 8 : VSR_regfile[gpr].bytes[15-elt] = el->bytes[0];

}
}

For VSR Registers one key difference is that the overlay of different element widths is clearly a bounded static
quantity, whereas for Simple-V the elements are unrestrained and permitted to flow into successive underlying
Scalar registers. This difference is absolutely critical to a full understanding of the entire Simple-V paradigm and
why element-ordering, bit-numbering and register numbering are all so strictly defined.

Implementations are not permitted to violate the Canonical definition. Software will be critically relying on the
wrapped (overflow) behaviour inherently implied by the unbounded variable-length c arrays.

Illustrating the exact same loop with the exact same effect as achieved by Simple-V we are first forced to create
wrapper functions, to cater for the fact that VSR register elements are static bounded:

int calc_VSR_reg_offs(int elt, int width) {
switch (width) {

case 64: return floor(elt / 2);
case 32: return floor(elt / 4);
case 16: return floor(elt / 8);
case 8 : return floor(elt / 16);

}
}
int calc_VSR_elt_offs(int elt, int width) {

switch (width) {
case 64: return (elt % 2);
case 32: return (elt % 4);
case 16: return (elt % 8);

CHAPTER 6. SVP64 85

case 8 : return (elt % 16);
}

}
void _set_VSR_element(el_reg_t* el, int gpr, int elt, int width) {

int new_elt = calc_VSR_elt_offs(elt, width);
int new_reg = calc_VSR_reg_offs(elt, width);
set_VSR_element(el, gpr+new_reg, new_elt, width);

}

And finally use these functions:

VSX-add RT, RA, RB using the "uint64_t" union member "hwords"
for i in range(VL):

el_reg_t result, ra, rb;
_get_VSR_element(&ra, RA, i, 16);
_get_VSR_element(&rb, RB, i, 16);
result.hwords[0] = ra.hwords[0] + rb.hwords[0]; // use array 0 elements
_set_VSR_element(&result, RT, i, 16);

6.1.7 Scalar Identity Behaviour

SVP64 is designed so that when the prefix is all zeros, and VL=1, no effect or influence occurs (no augmentation)
such that all standard Power ISA v3.0/v3.1 instructions covered by the prefix are “unaltered”. This is termed
scalar identity behaviour (based on the mathematical definition for “identity”, as in, “identity matrix” or
better “identity transformation”).

Note that this is completely different from when VL=0. VL=0 turns all operations under its influence into nops
(regardless of the prefix) whereas when VL=1 and the SV prefix is all zeros, the operation simply acts as if SV
had not been applied at all to the instruction (an “identity transformation”).

The fact that VL is dynamic and can be set to any value at runtime based on program conditions and behaviour
means very specifically that scalar identity behaviour is not a redundant encoding. If the only means by
which VL could be set was by way of static-compiled immediates then this assertion would be false. VL should
not be confused with MAXVL when understanding this key aspect of SimpleV.

6.1.8 Register Naming and size

As indicated above SV Registers are simply the GPR, FPR and CR register files extended linearly to larger
sizes; SV Vectorisation iterates sequentially through these registers (LSB0 sequential ordering from 0 to VL-1).

Where the integer regfile in standard scalar Power ISA v3.0B/v3.1B is r0 to r31, SV extends this as r0 to r127.
Likewise FP registers are extended to 128 (fp0 to fp127), and CR Fields are extended to 128 entries, CR0 thru
CR127.

The names of the registers therefore reflects a simple linear extension of the Power ISA v3.0B / v3.1B register
naming, and in hardware this would be reflected by a linear increase in the size of the underlying SRAM used
for the regfiles.

Note: when an EXTRA field (defined below) is zero, SV is deliberately designed so that the register fields are
identical to as if SV was not in effect i.e. under these circumstances (EXTRA=0) the register field names RA, RB
etc. are interpreted and treated as v3.0B / v3.1B scalar registers. This is part of scalar identity behaviour
described above.

Condition Register(s)

The Scalar Power ISA Condition Register is a 64 bit register where the top 32 MSBs (numbered 0:31 in MSB0
numbering) are not used. This convention is preserved in SVP64 and an additional 15 Condition Registers
provided in order to store the new CR Fields, CR8-CR15, CR16-CR23 etc. sequentially. The top 32 MSBs

CHAPTER 6. SVP64 86

in each new SVP64 Condition Register are also not used: only the bottom 32 bits (numbered 32:63 in MSB0
numbering).

Programmer’s note: using sv.mfcr without element-width overrides to take into account the fact that the top
32 MSBs are zero and thus effectively doubling the number of GPR registers required to hold all 128 CR Fields
would seem the only option because a source elwidth override to 32-bit would take only the bottom 16 LSBs of
the Condition Register and set the top 16 LSBs to zeros. However in this case it is possible to use destination
element-width overrides (for sv.mfcr. source overrides would be used on the GPR of sv.mtocrf), whereupon
truncation of the 64-bit Condition Register(s) occurs, throwing away the zeros and storing the remaining (valid,
desired) 32-bit values sequentially into (LSB0-convention) lower-numbered and upper-numbered halves of GPRs
respectively. The programmer is expected to be aware however that the full width of the entire 64-bit Condition
Register is considered to be “an element”. This is not like any other Condition-Register instructions because all
other CR instructions, on closer investigation, will be observed to all be CR-bit or CR-Field related. Thus a VL
of 16 must be used

Condition Register Fields as Predicate Masks

Condition Register Fields perform an additional duty in Simple-V: they are used for Predicate Masks. ARM’s
Scalar Instruction Set calls single-bit predication “Conditional Execution”, and utilises Condition Codes for
exactly this purpose to solve the problem caused by Branch Speculation. In a Vector ISA context the concept
of Predication is naturally extended from single-bit to multi-bit, and the (well-known) benefits become all the
more critical given that parallel branches in Vector ISAs are impossible (even a Vector ISA can only have Scalar
branches).

However the Scalar Power ISA does not have Conditional Execution (for which, if it had ever been considered,
Condition Register bits would be a perfect natural fit). Thus, when adding Predication using CR Fields via
Simple-V it becomes a somewhat disruptive addition to the Power ISA.

To ameliorate this situation, particularly for pre-existing Hardware designs implementing up to Scalar Power
ISA v3.1, some rules are set that allow those pre-existing designs not to require heavy modification to their
existing Scalar pipelines. These rules effectively allow Hardware Architects to add the additional CR Fields CR8
to CR127 as if they were an entirely separate register file.

• any instruction involving more than 1 source 1 destination where one of the operands is a Condition
Register is prohibited from using registers from both the CR0-7 group and the CR8-127 group at the same
time.

• any instruction involving 1 source 1 destination where either the source or the destination is a Condition
Register is prohibited from setting CR0-7 as a Vector.

• prohibitions are required to be enforced by raising Illegal Instruction Traps

Examples of permitted instructions:

sv.crand *cr8.eq, *cr16.le, *cr40.so # all CR8-CR127
sv.mfcr cr5, *cr40 # only one source (CR40) copied to CR5
sv.mfcr *cr16, cr40 # Vector-Splat CR40 onto CR16,17,18...
sv.mfcr *cr16, cr3 # Vector-Splat CR3 onto CR16,17,18...

Examples of prohibited instructions:

sv.mfcr *cr0, cr40 # Vector-Splat onto CR0,1,2
sv.crand cr7, cr9, cr10 # crosses over between CR0-7 and CR8-127

6.1.9 Future expansion.

With the way that EXTRA fields are defined and applied to register fields, future versions of SV may involve 256
or greater registers in some way as long as the reputation of Power ISA for full backwards binary interoperability
is preserved. Backwards binary compatibility may be achieved with a PCR bit (Program Compatibility Register)
or an MSR bit analogous to SF. Further discussion is out of scope for this version of SVP64.

CHAPTER 6. SVP64 87

Additionally, a future variant of SVP64 will be applied to the Scalar (Quad-precision and 128-bit) VSX instructions.
Element-width overrides are an opportunity to expand a future version of the Power ISA to 256-bit, 512-bit
and 1024-bit operations, as well as doubling or quadrupling the number of VSX registers to 128 or 256. Again
further discussion is out of scope for this version of SVP64.

CHAPTER 6. SVP64 88

6.1.10 SVP64 Remapped Encoding (RM[0:23])

In the SVP64 Vector Prefix spaces, the 24 bits 8-31 are termed RM. Bits 32-37 are the Primary Opcode of the
Suffix “Defined Word”. 38-63 are the remainder of the Defined Word. Note that the new EXT232-263 SVP64
area it is obviously mandatory that bit 32 is required to be set to 1.

0-5 6 7 8-31 32-37 38-64 Description
PO 0 1 RM[0:23] 1nnnnn xxxxxxxx SVP64:EXT232-263
PO 1 1 RM[0:23] nnnnnn xxxxxxxx SVP64:EXT000-063

It is important to note that unlike EXT1xx 64-bit prefixed instructions there is insufficient space in RM to provide
identification of any SVP64 Fields without first partially decoding the 32-bit suffix. Similar to the “Forms”
(X-Form, D-Form) the RM format is individually associated with every instruction. However this still does not
adversely affect Multi-Issue Decoding because the identification of the length of anything in the 64-bit space has
been kept brutally simple (EXT009), and further decoding of any number of 64-bit Encodings in parallel at that
point is fully independent.

Extreme caution and care must be taken when extending SVP64 in future, to not create unnecessary relationships
between prefix and suffix that could complicate decoding, adding latency.

6.1.11 Common RM fields

The following fields are common to all Remapped Encodings:

Field Name Field bits Description
MASKMODE 0 Execution (predication) Mask Kind
MASK 1:3 Execution Mask
SUBVL 8:9 Sub-vector length

The following fields are optional or encoded differently depending on context after decoding of the Scalar suffix:

Field Name Field bits Description
ELWIDTH 4:5 Element Width
ELWIDTH_SRC 6:7 Element Width for Source
EXTRA 10:18 Register Extra encoding
MODE 19:23 changes Vector behaviour

• MODE changes the behaviour of the SV operation (result saturation, mapreduce)
• SUBVL groups elements together into vec2, vec3, vec4 for use in 3D and Audio/Video DSP work
• ELWIDTH and ELWIDTH_SRC overrides the instruction’s destination and source operand width
• MASK (and MASK_SRC) and MASKMODE provide predication (two types of sources: scalar INT and

Vector CR).
• Bits 10 to 18 (EXTRA) are further decoded depending on the RM category for the instruction, which is

determined only by decoding the Scalar 32 bit suffix.

Similar to Power ISA X-Form etc. EXTRA bits are given designations, such as RM-1P-3S1D which indicates for
this example that the operation is to be single-predicated and that there are 3 source operand EXTRA tags and
one destination operand tag.

Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in
some implementations due to lane-crossing.

CHAPTER 6. SVP64 89

6.1.12 Mode

Mode is an augmentation of SV behaviour. Different types of instructions have different needs, similar to
Power ISA v3.1 64 bit prefix 8LS and MTRR formats apply to different instruction types. Modes include
Reduction, Iteration, arithmetic saturation, and Fail-First. More specific details in each section and in the
{SVP64 Appendix}

• For condition register operations see {Condition Register Fields Mode}
• For LD/ST Modes, see {Load/Store Mode}.
• For Branch modes, see {Branch Mode}
• For arithmetic and logical, see {Arithmetic Mode}

6.1.13 ELWIDTH Encoding

Default behaviour is set to 0b00 so that zeros follow the convention of scalar identity behaviour. In this case
it means that elwidth overrides are not applicable. Thus if a 32 bit instruction operates on 32 bit, elwidth=0b00
specifies that this behaviour is unmodified. Likewise when a processor is switched from 64 bit to 32 bit mode,
elwidth=0b00 states that, again, the behaviour is not to be modified.

Only when elwidth is nonzero is the element width overridden to the explicitly required value.

6.1.13.1 Elwidth for Integers:

Value Mnemonic Description
00 DEFAULT default behaviour for operation
01 ELWIDTH=w Word: 32-bit integer
10 ELWIDTH=h Halfword: 16-bit integer
11 ELWIDTH=b Byte: 8-bit integer

This encoding is chosen such that the byte width may be computed as 8<<(3-ew)

6.1.13.2 Elwidth for FP Registers:

Value Mnemonic Description
00 DEFAULT default behaviour for FP operation
01 ELWIDTH=f32 32-bit IEEE 754 Single floating-point
10 ELWIDTH=f16 16-bit IEEE 754 Half floating-point
11 ELWIDTH=bf16 Reserved for bf16

Note: bf16 is reserved for a future implementation of SV

Note that any IEEE754 FP operation in Power ISA ending in “s” (fadds) shall perform its operation at half the
ELWIDTH then padded back out to ELWIDTH. sv.fadds/ew=f32 shall perform an IEEE754 FP16 operation
that is then “padded” to fill out to an IEEE754 FP32. When ELWIDTH=DEFAULT clearly the behaviour of
sv.fadds is performed at 32-bit accuracy then padded back out to fit in IEEE754 FP64, exactly as for Scalar
v3.0B “single” FP. Any FP operation ending in “s” where ELWIDTH=f16 or ELWIDTH=bf16 is reserved and
must raise an illegal instruction (IEEE754 FP8 or BF8 are not defined).

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

CHAPTER 6. SVP64 90

6.1.13.3 Elwidth for CRs (no meaning)

Element-width overrides for CR Fields has no meaning. The bits are therefore used for other purposes, or when
Rc=1, the Elwidth applies to the result being tested (a GPR or FPR), but not to the Vector of CR Fields.

6.1.14 SUBVL Encoding

The default for SUBVL is 1 and its encoding is 0b00 to indicate that SUBVL is effectively disabled (a SUBVL
for-loop of only one element). this lines up in combination with all other “default is all zeros” behaviour.

Value Mnemonic Subvec Description
00 SUBVL=1 single Sub-vector length of 1
01 SUBVL=2 vec2 Sub-vector length of 2
10 SUBVL=3 vec3 Sub-vector length of 3
11 SUBVL=4 vec4 Sub-vector length of 4

The SUBVL encoding value may be thought of as an inclusive range of a sub-vector. SUBVL=2 represents a
vec2, its encoding is 0b01, therefore this may be considered to be elements 0b00 to 0b01 inclusive.

Effectively, SUBVL is like a SIMD multiplier: instead of just 1 element operation issued, SUBVL element
operations are issued (as an inner loop). The key difference between VL looping and SUBVL looping is that
predication bits are applied per group, rather than by individual element.

Directly related to subvl is the pack and unpack Mode bits of SVSTATE.

6.1.15 MASK/MASK_SRC & MASKMODE Encoding

One bit (MASKMODE) indicates the mode: CR or Int predication. The two types may not be mixed.

Special note: to disable predication this field must be set to zero in combination with Integer Predication also
being set to 0b000. this has the effect of enabling “all 1s” in the predicate mask, which is equivalent to “not
having any predication at all”.

MASKMODE may be set to one of 2 values:

Value Description
0 MASK/MASK_SRC are encoded using Integer Predication
1 MASK/MASK_SRC are encoded using CR-based Predication

Integer Twin predication has a second set of 3 bits that uses the same encoding thus allowing either the same
register (r3, r10 or r31) to be used for both src and dest, or different regs (one for src, one for dest).

Likewise CR based twin predication has a second set of 3 bits, allowing a different test to be applied.

Note that it cannot necessarily be assumed that Predicate Masks (whether INT or CR) are read in full before
the operations proceed. In practice (for CR Fields) this creates an unnecessary block on parallelism, prohibiting
“Vector Chaining”. Therefore, it is up to the programmer to ensure that the CR field Elements used as Predicate
Masks are not overwritten by any parallel Vector Loop. Doing so results in UNDEFINED behaviour, according
to the definition outlined in the Power ISA v3.0B Specification.

Hardware Implementations are therefore free and clear to delay reading of individual CR fields until the actual
predicated element operation needs to take place, safe in the knowledge that no programmer will have issued a
Vector Instruction where previous elements could have overwritten (destroyed) not-yet-executed CR-Predicated
element operations. This particularly is an issue when using REMAP, as the order in which CR-Field-based

CHAPTER 6. SVP64 91

Predicate Mask bits could be read on a per-element execution basis could well conflict with the order in which
prior elements wrote to the very same CR Field.

Additionally Programmers should avoid using r3 r10 or r30 as destination registers when these are also used as a
Predicate Mask. Doing so is again UNDEFINED behaviour.

6.1.15.1 Integer Predication (MASKMODE=0)

When the predicate mode bit is zero the 3 bits are interpreted as below. Twin predication has an identical 3 bit
field similarly encoded.

MASK and MASK_SRC may be set to one of 8 values, to provide the following meaning:

Value Mnemonic Element i enabled if:
000 ALWAYS predicate effectively all 1s
001 1 << R3 i == R3
010 R3 R3 & (1 << i) is non-zero
011 ~R3 R3 & (1 << i) is zero
100 R10 R10 & (1 << i) is non-zero
101 ~R10 R10 & (1 << i) is zero
110 R30 R30 & (1 << i) is non-zero
111 ~R30 R30 & (1 << i) is zero

r10 and r30 are at the high end of temporary and unused registers, so as not to interfere with register allocation
from ABIs.

6.1.15.2 CR-based Predication (MASKMODE=1)

When the predicate mode bit is one the 3 bits are interpreted as below. Twin predication has an identical 3 bit
field similarly encoded.

MASK and MASK_SRC may be set to one of 8 values, to provide the following meaning:

Value Mnemonic Element i is enabled if
000 lt CR[offs+i].LT is set
001 nl/ge CR[offs+i].LT is clear
010 gt CR[offs+i].GT is set
011 ng/le CR[offs+i].GT is clear
100 eq CR[offs+i].EQ is set
101 ne CR[offs+i].EQ is clear
110 so/un CR[offs+i].FU is set
111 ns/nu CR[offs+i].FU is clear

offs is defined as CR32 (4x8) so as to mesh cleanly with Vectorised Rc=1 operations (see below). Rc=1
operations start from CR8 (TBD).

The CR Predicates chosen must start on a boundary that Vectorised CR operations can access cleanly, in full.
With EXTRA2 restricting starting points to multiples of 8 (CR0, CR8, CR16. . .) both Vectorised Rc=1 and
CR Predicate Masks have to be adapted to fit on these boundaries as well.

CHAPTER 6. SVP64 92

6.1.16 Extra Remapped Encoding

Shows all instruction-specific fields in the Remapped Encoding RM[10:18] for all instruction variants. Note
that due to the very tight space, the encoding mode is not included in the prefix itself. The mode is “applied”,
similar to Power ISA “Forms” (X-Form, D-Form) on a per-instruction basis, and, like “Forms” are given a
designation (below) of the form RM-nP-nSnD. The full list of which instructions use which remaps is here {SVP64
Augmentation Table}.

Please note the following:

Machine-readable CSV files have been autogenerated which will make the
task of creating SV-aware ISA decoders, documentation, assembler tools
compiler tools Simulators documentation all aspects of SVP64 easier
and less prone to mistakes. Please avoid manual re-creation of
information from the written specification wording in this chapter,
and use the CSV files or use the Canonical tool which creates the CSV
files, named sv_analysis.py. The information contained within
sv_analysis.py is considered to be part of this Specification, even
encoded as it is in python3.

The mappings are part of the SVP64 Specification in exactly the same way as X-Form, D-Form. New Scalar
instructions added to the Power ISA will need a corresponding SVP64 Mapping, which can be derived by-rote
from examining the Register “Profile” of the instruction.

There are two categories: Single and Twin Predication. Due to space considerations further subdivision of
Single Predication is based on whether the number of src operands is 2 or 3. With only 9 bits available some
compromises have to be made.

• RM-1P-3S1D Single Predication dest/src1/2/3, applies to 4-operand instructions (fmadd, isel, madd).
• RM-1P-2S1D Single Predication dest/src1/2 applies to 3-operand instructions (src1 src2 dest)
• RM-2P-1S1D Twin Predication (src=1, dest=1)
• RM-2P-2S1D Twin Predication (src=2, dest=1) primarily for LDST (Indexed)
• RM-2P-1S2D Twin Predication (src=1, dest=2) primarily for LDST Update

6.1.16.1 RM-1P-3S1D

Field Name Field bits Description
Rdest_EXTRA2 10:11 extends Rdest (R*_EXTRA2 Encoding)
Rsrc1_EXTRA2 12:13 extends Rsrc1 (R*_EXTRA2 Encoding)
Rsrc2_EXTRA2 14:15 extends Rsrc2 (R*_EXTRA2 Encoding)
Rsrc3_EXTRA2 16:17 extends Rsrc3 (R*_EXTRA2 Encoding)
EXTRA2_MODE 18 used by divmod2du and maddedu for RS

These are for 3 operand in and either 1 or 2 out instructions. 3-in 1-out includes madd RT,RA,RB,RC. (DRAFT)
instructions such as maddedu have an implicit second destination, RS, the selection of which is determined by bit
18.

6.1.16.2 RM-1P-2S1D

Field Name Field bits Description
Rdest_EXTRA3 10:12 extends Rdest
Rsrc1_EXTRA3 13:15 extends Rsrc1
Rsrc2_EXTRA3 16:18 extends Rsrc3

CHAPTER 6. SVP64 93

These are for 2 operand 1 dest instructions, such as add RT, RA, RB. However also included are unusual
instructions with an implicit dest that is identical to its src reg, such as rlwinmi.

Normally, with instructions such as rlwinmi, the scalar v3.0B ISA would not have sufficient bit fields to allow an
alternative destination. With SV however this becomes possible. Therefore, the fact that the dest is implicitly
also a src should not mislead: due to the prefix they are different SV regs.

• rlwimi RA, RS, ...
• Rsrc1_EXTRA3 applies to RS as the first src
• Rsrc2_EXTRA3 applies to RA as the secomd src
• Rdest_EXTRA3 applies to RA to create an independent dest.

With the addition of the EXTRA bits, the three registers each may be independently made vector or scalar, and
be independently augmented to 7 bits in length.

6.1.16.3 RM-2P-1S1D/2S

Field Name Field bits Description
Rdest_EXTRA3 10:12 extends Rdest
Rsrc1_EXTRA3 13:15 extends Rsrc1
MASK_SRC 16:18 Execution Mask for Source

RM-2P-2S is for stw etc. and is Rsrc1 Rsrc2.

Field Name Field bits Description
Rsrc1_EXTRA3 10:12 extends Rsrc1
Rsrc2_EXTRA3 13:15 extends Rsrc2
MASK_SRC 16:18 Execution Mask for Source

6.1.16.4 RM-1P-2S1D

single-predicate, three registers (2 read, 1 write)

Field Name Field bits Description
Rdest_EXTRA3 10:12 extends Rdest
Rsrc1_EXTRA3 13:15 extends Rsrc1
Rsrc2_EXTRA3 16:18 extends Rsrc2

6.1.16.5 RM-2P-2S1D/1S2D/3S

The primary purpose for this encoding is for Twin Predication on LOAD and STORE operations. see {Load/Store
Mode} for detailed anslysis.

RM-2P-2S1D:

Field Name Field bits Description
Rdest_EXTRA2 10:11 extends Rdest (R*_EXTRA2 Encoding)
Rsrc1_EXTRA2 12:13 extends Rsrc1 (R*_EXTRA2 Encoding)
Rsrc2_EXTRA2 14:15 extends Rsrc2 (R*_EXTRA2 Encoding)
MASK_SRC 16:18 Execution Mask for Source

CHAPTER 6. SVP64 94

RM-2P-1S2D:

For RM-2P-1S2D dest2 is in bits 14:15

Field Name Field bits Description
Rdest_EXTRA2 10:11 extends Rdest (R*_EXTRA2 Encoding)
Rsrc1_EXTRA2 12:13 extends Rsrc1 (R*_EXTRA2 Encoding)
Rdest2_EXTRA2 14:15 extends Rdest22 (R*_EXTRA2 Encoding)
MASK_SRC 16:18 Execution Mask for Source

RM-2P-3S:

Also that for RM-2P-3S (to cover stdx etc.) the names are switched to 3 src: Rsrc1_EXTRA2, Rsrc2_EXTRA2,
Rsrc3_EXTRA2.

Field Name Field bits Description
Rsrc1_EXTRA2 10:11 extends Rsrc1 (R*_EXTRA2 Encoding)
Rsrc2_EXTRA2 12:13 extends Rsrc2 (R*_EXTRA2 Encoding)
Rsrc3_EXTRA2 14:15 extends Rsrc3 (R*_EXTRA2 Encoding)
MASK_SRC 16:18 Execution Mask for Source

Note also that LD with update indexed, which takes 2 src and creates 2 dest registers (e.g. lhaux RT,RA,RB),
does not have room for 4 registers and also Twin Predication. Therefore these are treated as RM-2P-2S1D and
the src spec for RA is also used for the same RA as a dest.

Note that if ELWIDTH != ELWIDTH_SRC this may result in reduced performance or increased latency in
some implementations due to lane-crossing.

6.1.17 R*_EXTRA2/3

EXTRA is the means by which two things are achieved:

1. Registers are marked as either Vector or Scalar
2. Register field numbers (limited typically to 5 bit) are extended in range, both for Scalar and Vector.

The register files are therefore extended:

• INT (GPR) is extended from r0-31 to r0-127
• FP (FPR) is extended from fp0-32 to fp0-fp127
• CR Fields are extended from CR0-7 to CR0-127

However due to pressure in RM.EXTRA not all these registers are accessible by all instructions, particularly those
with a large number of operands (madd, isel).

In the following tables register numbers are constructed from the standard v3.0B / v3.1B 32 bit register field
(RA, FRA) and the EXTRA2 or EXTRA3 field from the SV Prefix, determined by the specific RM-xx-yyyy
designation for a given instruction. The prefixing is arranged so that interoperability between prefixing and
nonprefixing of scalar registers is direct and convenient (when the EXTRA field is all zeros).

A pseudocode algorithm explains the relationship, for INT/FP (see {SVP64 Appendix} for CRs)

if extra3_mode:
spec = EXTRA3

else:
spec = EXTRA2 << 1 # same as EXTRA3, shifted

if spec[0]: # vector

CHAPTER 6. SVP64 95

return (RA << 2) | spec[1:2]
else: # scalar

return (spec[1:2] << 5) | RA

Future versions may extend to 256 by shifting Vector numbering up. Scalar will not be altered.

Note that in some cases the range of starting points for Vectors is limited.

6.1.17.1 INT/FP EXTRA3

If EXTRA3 is zero, maps to “scalar identity” (scalar Power ISA field naming).

Fields are as follows:

• Value: R_EXTRA3
• Mode: register is tagged as scalar or vector
• Range/Inc: the range of registers accessible from this EXTRA encoding, and the “increment” (accessibility).

“/4” means that this EXTRA encoding may only give access (starting point) every 4th register.
• MSB..LSB: the bit field showing how the register opcode field combines with EXTRA to give (extend) the

register number (GPR)

Encoding shown in LSB0: MSB down to LSB (MSB 6..0 LSB)

Value Mode Range/Inc 6..0
000 Scalar r0-r31/1 0b00 RA
001 Scalar r32-r63/1 0b01 RA
010 Scalar r64-r95/1 0b10 RA
011 Scalar r96-r127/1 0b11 RA
100 Vector r0-r124/4 RA 0b00
101 Vector r1-r125/4 RA 0b01
110 Vector r2-r126/4 RA 0b10
111 Vector r3-r127/4 RA 0b11

6.1.17.2 INT/FP EXTRA2

If EXTRA2 is zero will map to “scalar identity behaviour” i.e Scalar Power ISA register naming:

Encoding shown in LSB0: MSB down to LSB (MSB 6..0 LSB)

Value Mode Range/inc 6..0
00 Scalar r0-r31/1 0b00 RA
01 Scalar r32-r63/1 0b01 RA
10 Vector r0-r124/4 RA 0b00
11 Vector r2-r126/4 RA 0b10

Note that unlike in EXTRA3, in EXTRA2:

• the GPR Vectors may only start from r0, r2, r4, r6, r8 and likewise FPR Vectors.
• the GPR Scalars may only go from r0, r1, r2.. r63 and likewise FPR Scalars.

as there is insufficient bits to cover the full range.

CHAPTER 6. SVP64 96

6.1.17.3 CR Field EXTRA3

CR Field encoding is essentially the same but made more complex due to CRs being bit-based, because the
application of SVP64 element-numbering applies to the CR Field numbering not the CR register bit numbering.
Note that Vectors may only start from CR0, CR4, CR8, CR12, CR16, CR20. . . and Scalars may only go from
CR0, CR1, ... CR31

Encoding shown in LSB0: MSB down to LSB (MSB 8..5 4..2 1..0 LSB), BA ranges are in MSB0.

For a 5-bit operand (BA, BB, BT):

Value Mode Range/Inc 8..5 4..2 1..0
000 Scalar CR0-CR7/1 0b0000 BA[0:2] BA[3:4]
001 Scalar CR8-CR15/1 0b0001 BA[0:2] BA[3:4]
010 Scalar CR16-CR23/1 0b0010 BA[0:2] BA[3:4]
011 Scalar CR24-CR31/1 0b0011 BA[0:2] BA[3:4]
100 Vector CR0-CR112/16 BA[0:2] 0 0b000 BA[3:4]
101 Vector CR4-CR116/16 BA[0:2] 0 0b100 BA[3:4]
110 Vector CR8-CR120/16 BA[0:2] 1 0b000 BA[3:4]
111 Vector CR12-CR124/16 BA[0:2] 1 0b100 BA[3:4]

For a 3-bit operand (e.g. BFA):

Value Mode Range/Inc 6..3 2..0
000 Scalar CR0-CR7/1 0b0000 BFA
001 Scalar CR8-CR15/1 0b0001 BFA
010 Scalar CR16-CR23/1 0b0010 BFA
011 Scalar CR24-CR31/1 0b0011 BFA
100 Vector CR0-CR112/16 BFA 0 0b000
101 Vector CR4-CR116/16 BFA 0 0b100
110 Vector CR8-CR120/16 BFA 1 0b000
111 Vector CR12-CR124/16 BFA 1 0b100

6.1.17.4 CR EXTRA2

CR encoding is essentially the same but made more complex due to CRs being bit-based, because the application
of SVP64 element-numbering applies to the CR Field numbering not the CR register bit numbering. Note that
Vectors may only start from CR0, CR8, CR16, CR24, CR32. . .

Encoding shown in LSB0: MSB down to LSB (MSB 8..5 4..2 1..0 LSB), BA ranges are in MSB0.

For a 5-bit operand (BA, BB, BC):

Value Mode Range/Inc 8..5 4..2 1..0
00 Scalar CR0-CR7/1 0b0000 BA[0:2] BA[3:4]
01 Scalar CR8-CR15/1 0b0001 BA[0:2] BA[3:4]
10 Vector CR0-CR112/16 BA[0:2] 0 0b000 BA[3:4]
11 Vector CR8-CR120/16 BA[0:2] 1 0b000 BA[3:4]

For a 3-bit operand (e.g. BFA):

CHAPTER 6. SVP64 97

Value Mode Range/Inc 6..3 2..0
00 Scalar CR0-CR7/1 0b0000 BFA
01 Scalar CR8-CR15/1 0b0001 BFA
10 Vector CR0-CR112/16 BFA 0 0b000
11 Vector CR8-CR120/16 BFA 1 0b000

6.1.18 Appendix

Now at its own page: {SVP64 Appendix}

[[!tag standards]]

Chapter 7

SPRs

7.1 SPRs

The full list of SPRs for Simple-V is:

SPR Width Description
SVSTATE 64-bit Zero-Overhead Loop Architectural State
SVLR 64-bit SVSTATE equivalent of LR-to-PC
SVSHAPE0 32-bit REMAP Shape 0
SVSHAPE1 32-bit REMAP Shape 1
SVSHAPE2 32-bit REMAP Shape 2
SVSHAPE3 32-bit REMAP Shape 3

Future versions of Simple-V will have at least 7 more SVSTATE SPRs, in a small “stack”, as part of a full
Zero-Overhead Loop Control subsystem.

7.1.1 SVSTATE SPR

The format of the SVSTATE SPR is as follows:

Field Name Description
0:6 maxvl Max Vector Length
7:13 vl Vector Length
14:20 srcstep for srcstep = 0..VL-1
21:27 dststep for dststep = 0..VL-1
28:29 dsubstep for substep = 0..SUBVL-1
30:31 ssubstep for substep = 0..SUBVL-1
32:33 mi0 REMAP RA/FRA/BFA SVSHAPE0-3
34:35 mi1 REMAP RB/FRB/BFB SVSHAPE0-3
36:37 mi2 REMAP RC/FRT SVSHAPE0-3
38:39 mo0 REMAP RT/FRT/BF SVSHAPE0-3
40:41 mo1 REMAP EA/RS/FRS SVSHAPE0-3
42:46 SVme REMAP enable (RA-RT)
47:52 rsvd reserved
53 pack PACK (srcstep reorder)
54 unpack UNPACK (dststep order)

98

CHAPTER 7. SPRS 99

Field Name Description
55:61 hphint Horizontal Hint
62 RMpst REMAP persistence
63 vfirst Vertical First mode

Notes:

• The entries are truncated to be within range. Attempts to set VL to greater than MAXVL will truncate
VL.

• Setting srcstep, dststep to 64 or greater, or VL or MVL to greater than 64 is reserved and will cause an
illegal instruction trap.

SVSTATE Fields

SVSTATE is a standard SPR that (if REMAP is not activated) contains sufficient self-contaned information for
a full context save/restore. SVSTATE contains (and permits setting of):

• MVL (the Maximum Vector Length) - declares (statically) how much of a regfile is to be reserved for
Vector elements

• VL - Vector Length
• dststep - the destination element offset of the current parallel instruction being executed
• srcstep - for twin-predication, the source element offset as well.
• ssubstep - the source subvector element offset of the current parallel instruction being executed
• dsubstep - the destination subvector element offset of the current parallel instruction being executed
• vfirst - Vertical First mode. srcstep, dststep and substep do not advance unless explicitly requested to

do so with svstep
• RMpst - REMAP persistence. REMAP will apply only to the following instruction unless this bit is set, in

which case REMAP “persists”. Reset (cleared) on use of the setvl instruction if used to alter VL or MVL.
• Pack - if set then srcstep/ssubstep VL/SUBVL loop-ordering is inverted.
• UnPack - if set then dststep/dsubstep VL/SUBVL loop-ordering is inverted.
• hphint - Horizontal Parallelism Hint. Indicates that no Hazards exist between groups of elements in sequen-

tial multiples of this number (before REMAP). By definition: elements for which FLOOR(step/hphint)
is equal before REMAP are in the same parallelism “group”, for both srcstep and dststep. In Vertical
First Mode hardware MUST respect Strict Program Order but is permitted to merge multiple scalar
loops into parallel batches, if Reservation Station resources are sufficient. Set to zero to indicate “no hint”.

• SVme - REMAP enable bits, indicating which register is to be REMAPed: RA, RB, RC, RT and EA are
the canonical (typical) register names associated with each bit, with RA being the LSB and EA being
the MSB. See table below for ordering. When SVme is zero (0b00000) REMAP is fully disabled and
inactive regardless of the contents of SVSTATE, mi0-mi2/mo0-mo1, or the four SVSHAPEn SPRs

• mi0-mi2/mo0-mo1 - these indicate the SVSHAPE (0-3) that the corresponding register (RA etc) should
use, as long as the register’s corresponding SVme bit is set

Programmer’s Note: the fact that REMAP is entirely dormant when SVme is zero allows establishment of
REMAP context well in advance, followed by utilising svremap at a precise (or the very last) moment. Some
implementations may exploit this to cache (or take some time to prepare caches) in the background whilst other
(unrelated) instructions are being executed. This is particularly important to bear in mind when using svindex
which will require hardware to perform (and cache) additional GPR reads.

Programmer’s Note: when REMAP is activated it becomes necessary on any context-switch (Interrupt or
Function call) to detect (or know in advance) that REMAP is enabled and to additionally explicitly save/restore
the four SVSHAPE SPRs, SVHAPE0-3. Given that this is expected to be a rare occurrence it was deemed
unreasonable to burden every context-switch or function call with mandatory save/restore of SVSHAPEs, and
consequently it is a callee (and Trap Handler) responsibility. Callees (and Trap Handlers) MUST avoid using
all and any SVP64 instructions during the period where state could be adversely affected. SVP64 purely relies
on Scalar instructions, so Scalar instructions (except the SVP64 Management ones and mtspr and mfspr) are
100% guaranteed to have zero impact on SVP64 state.

CHAPTER 7. SPRS 100

SVme REMAP area

Each bit of SVSTATE.SVme indicates whether the SVSHAPE (0-3) is active and to which register the REMAP
applies. The application goes by assembler operand names on a per-mnemonic basis. Some instructions may have
RT as a source and as a destination: REMAP applies separately to each use in this case. Also for Load/Store
with Update the Effective Address (stored in EA) also may be separately REMAPed from RA as a source
operand.

bit applies register applied
46 mi0 source RA / FRA / BA / BFA / RT / FRT
45 mi1 source RB / FRB / BB
44 mi2 source RC / FRC / BC
43 mo0 result RT / FRT / BT / BF
42 mo1 result Effective Address (RA) / FRS / RS

Max Vector Length (maxvl)

MAXVECTORLENGTH is a static (immediate-operand only) compile-time declaration of the maximum number
of elements in a Vector. MVL is limited to 7 bits (in the first version of SVP64) and consequently the maximum
number of elements is limited to between 0 and 127.

MAXVL is normally (in other True-Scalable Vector ISAs) an Architecturally-defined quantity related indirectly
to the total available number of bits in the Vector Register File. Cray Vectors had a Hardware-Architectural set
limit of MAXVL=64. RISC-V RVV has MAXVL defined in terms of a Silicon-Partner-selectable fixed number
of bits. MAXVL in Simple-V is set in terms of the number of elements and may change at runtime.

Programmer’s Note: Except by directly using mtspr on SVSTATE, which may result in performance penalties
on some hardware implementations, SVSTATE’s maxvl field may only be set statically as an immediate, by the
setvl instruction. It may NOT be set dynamically from a register. Compiler writers and assembly programmers
are expected to perform static register file analysis, subdivision, and allocation and only utilise setvl. Direct
writing to SVSTATE in order to “bypass” this Note could, in less-advanced implementations, potentially cause
stalling, particularly if SVP64 instructions are issued directly after the mtspr to SVSTATE.

Vector Length (vl)

The actual Vector length, the number of elements in a “Vector”, SVSTATE.vl may be set entirely dynamically
at runtime from a number of sources. setvl is the primary instruction for setting Vector Length. setvl is
conceptually similar but different from the Cray, SX Aurora, and RISC-V RVV equivalent. Similar to RVV, VL
is set to be within the range 0 <= VL <= MVL. Unlike RVV, VL is set exactly according to the following:

VL = (RT|0) = MIN(vlen, MVL)

where 0 <= MVL <= 127, and vlen may come from an immediate, RA, or from the CTR SPR, depending on options
selected with the setvl instruction.

Programmer’s Note: conceptual understanding of Cray-style Vectors is far beyond the scope of the Power ISA
Technical Reference. Guidance on the 50-year-old Cray Vector paradigm is best sought elsewhere: good studies
include Academic Courses given on the 1970s Cray Supercomputers over at least the past three decades.

Horizontal Parallelism

A problem exists for hardware where it may not be able to detect that a programmer (or compiler) knows
of opportunities for parallelism and lack of overlap between loops, despite these being easy for a compiler to
statically detect and potentially express. hphint is such an expression, declaring that elements within a batch
are independent of each other (no Register or Memory Hazards).

Elements are considered to be in the same source batch if they have the same value of FLOOR(srcstep/hphint).
Likewise in the same destination batch for the same value FLOOR(dststep/hphint). Four key observations here:

CHAPTER 7. SPRS 101

1. predication is not involved here. the number of actual elements involved is considered before predicate
masks are applied.

2. twin predication can result in srcstep and dststep being in different batches
3. batch evaluation is done before REMAP, making Hazard elimination easier for Multi-Issue systems.
4. hphint is not limited to power-of-two. Hardware implementors may choose a lower parallelism hint up to

hphint and may find power-of-two more convenient.

Regarding (4): if a smaller hint is chosen by hardware, actual parallelism (Dependency Hazard relaxation) must
never exceed hphint and must still respect the batch boundaries, even if this results in just one element being
considered Hazard-independent. Even under these circumstances Multi-Issue Register-renaming is possible, to
introduce parallelism by a different route.

Hardware Architect note: each element within the same group may be treated as 100% independent from any other
element within that group, and therefore neither Register Hazards nor Memory Hazards inter-element exist, but
crucially inter-group definitely remains. This makes implementation far easier on resources because the Hazard
Dependencies are effectively at a much coarser granularity than a single register. With element-width overrides
extending down to the byte level reducing Dependency Hazard hardware complexity becomes even more important.

hphint may legitimately be set greater than MAXVL. This indicates to Multi-Issue hardware that even though
MAXVL is relatively small the batches are still independent and therefore if Multi-Issue hardware chooses to
allocate several batches up to MAXVL in size they are still independent, even if Register-renaming is deployed.
This helps greatly simplify Multi-Issue systems by significantly reducing Hazards.

Considerable care must be taken when setting hphint. Matrix Outer Product could produce corrupted results
if hphint is set to greater than the innermost loop depth. Parallel Reduction, DCT and FFT REMAP all are
similarly critically affected by hphint in ways that if used correctly greatly increases ease of parallelism but if
done incorrectly will also result in data corruption. Reduction/Iteration also requires care to correctly declare
in hphint how many elements are independent. In the case of most Reduction use-cases the answer is almost
certainly “none”.

hphint must never be set on Atomic Memory operations, Cache-Inhibited Memory operations, or Load-
Reservation Store-Conditional. Also if Load-with-Update Data-Dependent Fail-First is ever used for linked-list
pointer-chasing, hphint should again definitely be disabled. Failure to do so results in UNDEFINED behaviour.

hphintmay only be ignored by Hardware Implementors as long as full element-level Register and Memory Hazards
are implemented in full (including right down to individual bytes of each register for when elwidth=8/16/32).
In other words if hphint is to be ignored then implementations must consider the situation as if hphint=0.

Horizontal Parallelism in Vertical-First Mode

Setting hphint with Vertical-First is perfectly legitimate. Under these circumstances single-element strict
Program Execution Order must be preserved at all times, but should there be a small enough program loop,
than Out-of-Order Hardware may take the opportunity to merge consecutive element-based instructions into
the same Reservation Stations, for multiple operations to be passed to massive-wide back-end SIMD ALUs or
Vector-Chaining ALUs. Only elements within the same hphint group (across multiple such looped instructions)
may be treated as mergeable in this fashion.

Note that if the loop of Vertical-First instructions cannot fit entirely into Reservation Stations then Hardware
clearly cannot exploit the above optimisation opportunity, but at least there is no harm done: the loop is still
correctly executed as Scalar instructions. Programmers do need to be aware though that short loops on some
Hardware Implementations can be made considerably faster than on other Implementations.

7.1.2 SVLR

SV Link Register, exactly analogous to LR (Link Register) may be used for temporary storage of SVSTATE,
and, in particular, Vectorised Branch-Conditional instructions may interchange SVLR and SVSTATE whenever
LR and NIA are.

CHAPTER 7. SPRS 102

Note that there is no equivalent Link variant of SVREMAP or SVSHAPE0-3 (it would be too costly), so SVLR
has limited applicability: REMAP SPRs must be saved and restored explicitly.

[[!tag standards]]

Chapter 8

Arithmetic Mode

8.1 Normal SVP64 Modes, for Arithmetic and Logical Operations

• https://bugs.libre-soc.org/show_bug.cgi?id=574
• https://bugs.libre-soc.org/show_bug.cgi?id=558#c47
• https://bugs.libre-soc.org/show_bug.cgi?id=936 write on failfirst
• {SVP64 Chapter}

Normal SVP64 Mode covers Arithmetic and Logical operations to provide suitable additional behaviour. The
Mode field is bits 19-23 of the {SVP64 Chapter} RM Field.

Table of contents:

[[!toc]]

8.1.1 Mode

Mode is an augmentation of SV behaviour, providing additional functionality. Some of these alterations are
element-based (saturation), others are Vector-based (mapreduce, fail-on-first).

{Load/Store Mode}, {Condition Register Fields Mode} and {Branch Mode} are covered separately: the following
Modes apply to Arithmetic and Logical SVP64 operations:

• simple mode is straight vectorisation. No augmentations: the vector comprises an array of independently
created results.

• ffirst or data-dependent fail-on-first: see separate section. The vector may be truncated depending on
certain criteria. VL is altered as a result.

• sat mode or saturation: clamps each element result to a min/max rather than overflows / wraps. Allows
signed and unsigned clamping for both INT and FP.

• reduce mode. If used correctly, a mapreduce (or a prefix sum) is performed. See {SVP64 Appendix}.
Note that there are comprehensive caveats when using this mode, and it should not be confused with the
Parallel Reduction {REMAP subsystem}. Also care is needed with hphint.

Note that ffirst and reduce modes are not anticipated to be high-performance in some implementations. ffirst
due to interactions with VL, and reduce due to it creating overlapping operations in many of its uses. simple
and saturate are however inter-element independent and may easily be parallelised to give high performance,
regardless of the value of VL.

The Mode table for Arithmetic and Logical operations, being bits 19-23 of SVP64 RM, is laid out as follows:

103

https://bugs.libre-soc.org/show_bug.cgi?id=574
https://bugs.libre-soc.org/show_bug.cgi?id=558#c47
https://bugs.libre-soc.org/show_bug.cgi?id=936

CHAPTER 8. ARITHMETIC MODE 104

0-1 2 3 4 description

0-1 2 3 4 description
00 0 dz sz simple mode
00 1 0 RG scalar reduce mode (mapreduce)
00 1 1 / reserved
01 inv CR-bit Rc=1: ffirst CR sel
01 inv VLi RC1 Rc=0: ffirst z/nonz
10 N dz sz sat mode: N=0/1 u/s
11 / / / reserved

Fields:

• sz / dz source-zeroing, destination-zeroing. if predication is enabled will put zeros into the dest (or as
src in the case of twin pred) when the predicate bit is zero. Otherwise the element is ignored or skipped,
depending on context.

• zz: both sz and dz are set equal to this flag
• inv CR bit just as in branches (BO) these bits allow testing of a CR bit and whether it is set (inv=0) or

unset (inv=1)
• RG inverts the Vector Loop order (VL-1 downto 0) rather than the normal 0..VL-1
• N sets signed/unsigned saturation.
• RC1 as if Rc=1, enables access to VLi.
• VLi VL inclusive: in fail-first mode, the truncation of VL includes the current element at the failure point

rather than excludes it from the count.

For LD/ST Modes, see {Load/Store Mode}. For Condition Registers see {Condition Register Fields Mode}. For
Branch modes, see {Branch Mode}.

8.1.2 Rounding, clamp and saturate

See {Audio and Video Opcodes} for relevant opcodes and use-cases.

To help ensure for example that audio quality is not compromised by overflow, “saturation” is provided, as well
as a way to detect when saturation occurred if desired (Rc=1). When Rc=1 there will be a vector of CRs, one
CR per element in the result (Note: this is different from VSX which has a single CR per block).

When N=0 the result is saturated to within the maximum range of an unsigned value. For integer ops this will
be 0 to 2ˆelwidth-1. Similar logic applies to FP operations, with the result being saturated to maximum rather
than returning INF, and the minimum to +0.0

When N=1 the same occurs except that the result is saturated to the min or max of a signed result, and for FP
to the min and max value rather than returning +/- INF.

When Rc=1, the CR “overflow” bit is set on the CR associated with the element, to indicate whether saturation
occurred. Note that due to the hugely detrimental effect it has on parallel processing, XER.SO is ignored
completely and is not brought into play here. The CR overflow bit is therefore simply set to zero if saturation did
not occur, and to one if it did. This behaviour (ignoring XER.SO) is actually optional in the SFFS Compliancy
Subset: for SVP64 it is made mandatory but only on Vectorised instructions.

Note also that saturate on operations that set OE=1 must raise an Illegal Instruction due to the conflicting use
of the CR.so bit for storing if saturation occurred. Vectorised Integer Operations that produce a Carry-Out (CA,
CA32): these two bits will be UNDEFINED if saturation is also requested.

Note that the operation takes place at the maximum bitwidth (max of src and dest elwidth) and that truncation
occurs to the range of the dest elwidth.

CHAPTER 8. ARITHMETIC MODE 105

Programmer’s Note: Post-analysis of the Vector of CRs to find out if any given element hit saturation may be
done using a mapreduced CR op (cror), or by using the new crrweird instruction with Rc=1, which will transfer
the required CR bits to a scalar integer and update CR0, which will allow testing the scalar integer for nonzero.
See {CR Weird ops}. Alternatively, a Data-Dependent Fail-First may be used to truncate the Vector Length to
non-saturated elements, greatly increasing the productivity of parallelised inner hot-loops.

8.1.3 Reduce mode

Reduction in SVP64 is similar in essence to other Vector Processing ISAs, but leverages the underlying scalar
Base v3.0B operations. Thus it is more a convention that the programmer may utilise to give the appearance and
effect of a Horizontal Vector Reduction. Due to the unusual decoupling it is also possible to perform prefix-sum
(Fibonacci Series) in certain circumstances. Details are in the {SVP64 Appendix}

Reduce Mode should not be confused with Parallel Reduction {REMAP subsystem}. As explained in the {SVP64
Appendix} Reduce Mode switches off the check which would normally stop looping if the result register is scalar.
Thus, the result scalar register, if also used as a source scalar, may be used to perform sequential accumulation.
This deliberately sets up a chain of Register Hazard Dependencies (which advanced hardware may optimise out),
whereas Parallel Reduce {REMAP subsystem} deliberately issues a Tree-Schedule of operations that may be
parallelised.

Hardware architectural note: implementations may optimise out the Hazard Dependency chain as long as
Sequential Program Execution Order is preserved. Easy examples include Reduction on Logical OR or AND
operations.

Horizontal Parallelism Hint

SVSTATE.hphint declares to hardware that groups of elements up to this size are 100% independent (free of all
Hazards inter-element but not inter-group). With Reduction literally creating Dependency Hazards on every
element-level sub-instruction it is pretty clear that setting hphint at all would cause data corruption. However
sv.add *r0, *r4, *r0 for example clearly leaves room for four parallel elements. Programmers must be aware
of this and exercise caution.

8.1.4 Data-dependent Fail-on-first

Data-dependent fail-on-first is CR-field-driven and is completely separate and distinct from LD/ST Fail-First
(also known as Fault-First). Note in each case the assumption is that vector elements are required to appear to
be executed in sequential Program Order. When REMAP is not active, element 0 would be the first.

Data-driven (CR-field-driven) fail-on-first activates when Rc=1 or other CR-creating operation produces a result
(including cmp). Similar to Branch-Conditional, an analysis of the CR is performed and if the test fails, the
vector operation terminates and discards all element operations at and above the current one, and VL is
truncated to either the previous element or the current one, depending on whether VLi (VL “inclusive”) is clear
or set, respectively.

Thus the new VL comprises a contiguous vector of results, all of which pass the testing criteria (equal to zero,
less than zero etc as defined by the CR-bit test).

Note: when VLi is clear, the behaviour at first seems counter-intuitive. A result is calculated but if the test fails
it is prohibited from being actually written. This becomes intuitive again when it is remembered that the length
that VL is set to is the number of written* elements, and only when VLI is set will the current element be
included in that count.*

The CR-based data-driven fail-on-first is “new” and not found in ARM SVE or RVV. At the same time it is
“old” because it is almost identical to a generalised form of Z80’s CPIR instruction. It is extremely useful for
reducing instruction count, however requires speculative execution involving modifications of VL to get high
performance implementations. An additional mode (RC1=1) effectively turns what would otherwise be an

CHAPTER 8. ARITHMETIC MODE 106

arithmetic operation into a type of cmp. The CR is stored (and the CR.eq bit tested against the inv field). If
the CR.eq bit is equal to inv then the Vector is truncated and the loop ends.

VLi is only available as an option when Rc=0 (or for instructions which do not have Rc). When set, the
current element is always also included in the count (the new length that VL will be set to). This may be
useful in combination with “inv” to truncate the Vector to exclude elements that fail a test, or, in the case of
implementations of strncpy, to include the terminating zero.

In CR-based data-driven fail-on-first there is only the option to select and test one bit of each CR (just as with
branch BO). For more complex tests this may be insufficient. If that is the case, a vectorised crop such as crand,
cror or {CR Weird ops} crweirder may be used, and ffirst applied to the crop instead of to the arithmetic vector.
Note that crops are covered by the {Condition Register Fields Mode} Mode format.

Use of Fail-on-first with Vertical-First Mode is not prohibited but is not really recommended. The effect of
truncating VL may have unintended and unexpected consequences on subsequent instructions. VLi set will be
fine: it is when VLi is clear that problems may be faced.

Programmer’s note: VLi is only accessible in normal operations which in turn limits the CR field bit-testing
to only EQ/NE. {Condition Register Fields Mode} are not so limited. Thus it is possible to use for example
sv.cror/ff=gt/vli *0,*0,*0, which is not a nop because it allows Fail-First Mode to perform a test and
truncate VL.

Hardware implementor’s note: effective Sequential Program Order must be preserved. Speculative Execution
is perfectly permitted as long as the speculative elements are held back from writing to register files (kept in
Resevation Stations), until such time as the relevant CR Field bit(s) has been analysed. All Speculative elements
sequentially beyond the test-failure point MUST be cancelled. This is no different from standard Out-of-Order
Execution and the modification effort to efficiently support Data-Dependent Fail-First within a pre-existing
Multi-Issue Out-of-Order Engine is anticipated to be minimal. In-Order systems on the other hand are expected,
unavoidably, to be low-performance.

Two extremely important aspects of ffirst are:

• LDST ffirst may never set VL equal to zero. This because on the first element an exception must be raised
“as normal”.

• CR-based data-dependent ffirst on the other hand can set VL equal to zero. When VL is set zero due to
the first element failing the CR bit-test, all subsequent vectorised operations are effectively nops which is
precisely the desired and intended behaviour.

The second crucial aspect, compared to LDST Ffirst:

• LD/ST Failfirst may (beyond the initial first element conditions) truncate VL for any architecturally suitable
reason. Beyond the first element LD/ST Failfirst is arbitrarily speculative and 100% non-deterministic.

• CR-based data-dependent first on the other hand MUST NOT truncate VL arbitrarily to a length decided
by the hardware: VL MUST only be truncated based explicitly on whether a test fails. This because it is a
precise Deterministic test on which algorithms can and will rely.

Floating-point Exceptions

When Floating-point exceptions are enabled VL must be truncated at the point where the Exception appears
not to have occurred. If VLi is set then VL must include the faulting element, and thus the faulting element will
always raise its exception. If however VLi is clear then VL excludes the faulting element and thus the exception
will never be raised.

Although very strongly discouraged the Exception Mode that permits Floating Point Exception notification to
arrive too late to unwind is permitted (under protest, due it violating the otherwise 100% Deterministic nature
of Data-dependent Fail-first).

Use of lax FP Exception Notification Mode could result in parallel computations proceeding with
invalid results that have to be explicitly detected, whereas with the strict FP Execption Mode
enabled, FFirst truncates VL, allows subsequent parallel computation to avoid the exceptions
entirely

CHAPTER 8. ARITHMETIC MODE 107

8.1.5 Data-dependent fail-first on CR operations (crand etc)

Operations that actually produce or alter CR Field as a result have their own SVP64 Mode, described in
{Condition Register Fields Mode}.

[[!tag standards]]

Chapter 9

Load/Store Mode

9.1 SV Load and Store

Links:

• https://bugs.libre-soc.org/show_bug.cgi?id=561
• https://bugs.libre-soc.org/show_bug.cgi?id=572
• https://bugs.libre-soc.org/show_bug.cgi?id=571
• https://bugs.libre-soc.org/show_bug.cgi?id=940 post autoincrement mode
• https://bugs.libre-soc.org/show_bug.cgi?id=1047 Data-Dependent Fail-First
• https://llvm.org/devmtg/2016-11/Slides/Emerson-ScalableVectorizationinLLVMIR.pdf
• https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vector-loads-and-stores
• [[ldst/discussion]]

9.1.1 Rationale

All Vector ISAs dating back fifty years have extensive and comprehensive Load and Store operations that go far
beyond the capabilities of Scalar RISC and most CISC processors, yet at their heart on an individual element
basis may be found to be no different from RISC Scalar equivalents.

The resource savings from Vector LD/ST are significant and stem from the fact that one single instruction
can trigger a dozen (or in some microarchitectures such as Cray or NEC SX Aurora) hundreds of element-level
Memory accesses.

Additionally, and simply: if the Arithmetic side of an ISA supports Vector Operations, then in order to keep the
ALUs 100% occupied the Memory infrastructure (and the ISA itself) correspondingly needs Vector Memory
Operations as well.

Vectorised Load and Store also presents an extra dimension (literally) which creates scenarios unique to Vector
applications, that a Scalar (and even a SIMD) ISA simply never encounters. SVP64 endeavours to add the
modes typically found in all Scalable Vector ISAs, without changing the behaviour of the underlying Base
(Scalar) v3.0B operations in any way. (The sole apparent exception is Post-Increment Mode on LD/ST-update
instructions)

9.1.2 Modes overview

Vectorisation of Load and Store requires creation, from scalar operations, a number of different modes:

• fixed aka “unit” stride - contiguous sequence with no gaps
• element strided - sequential but regularly offset, with gaps

108

https://bugs.libre-soc.org/show_bug.cgi?id=561
https://bugs.libre-soc.org/show_bug.cgi?id=572
https://bugs.libre-soc.org/show_bug.cgi?id=571
https://bugs.libre-soc.org/show_bug.cgi?id=940
https://bugs.libre-soc.org/show_bug.cgi?id=1047
https://llvm.org/devmtg/2016-11/Slides/Emerson-ScalableVectorizationinLLVMIR.pdf
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vector-loads-and-stores

CHAPTER 9. LOAD/STORE MODE 109

• vector indexed - vector of base addresses and vector of offsets
• Speculative fail-first - where it makes sense to do so
• Structure Packing - covered in SV by {REMAP subsystem} and Pack/Unpack Mode.

Despite being constructed from Scalar LD/ST none of these Modes exist or make sense in any Scalar ISA. They
only exist in Vector ISAs and are a critical part of its value.

Also included in SVP64 LD/ST is both signed and unsigned Saturation, as well as Element-width overrides and
Twin-Predication.

Note also that Indexed {REMAP subsystem} mode may be applied to both Scalar LD/ST Immediate Defined
Words and LD/ST Indexed Defined Words. LD/ST-Indexed should not be conflated with Indexed REMAP
mode: clarification is provided below.

Determining the LD/ST Modes

A minor complication (caused by the retro-fitting of modern Vector features to a Scalar ISA) is that certain
features do not exactly make sense or are considered a security risk. Fail-first on Vector Indexed would allow
attackers to probe large numbers of pages from userspace, where strided fail-first (by creating contiguous
sequential LDs) does not.

In addition, reduce mode makes no sense. Realistically we need an alternative table definition for {SVP64
Chapter} RM.MODE. The following modes make sense:

• saturation
• simple (no augmentation)
• fail-first (where Vector Indexed is banned)
• Signed Effective Address computation (Vector Indexed only)

More than that however it is necessary to fit the usual Vector ISA capabilities onto both Power ISA LD/ST with
immediate and to LD/ST Indexed. They present subtly different Mode tables, which, due to lack of space, have
the following quirks:

• LD/ST Immediate has no individual control over src/dest zeroing, whereas LD/ST Indexed does.
• LD/ST Immediate has saturation but LD/ST Indexed does not.

9.1.3 Format and fields

Fields used in tables below:

• sz / dz if predication is enabled will put zeros into the dest (or as src in the case of twin pred) when the
predicate bit is zero. otherwise the element is ignored or skipped, depending on context.

• zz: both sz and dz are set equal to this flag.
• inv CR bit just as in branches (BO) these bits allow testing of a CR bit and whether it is set (inv=0) or

unset (inv=1)
• N sets signed/unsigned saturation.
• RC1 as if Rc=1, stores CRs but not the result
• SEA - Signed Effective Address, if enabled performs sign-extension on registers that have been reduced

due to elwidth overrides
• PI - post-increment mode (applies to LD/ST with update only). the Effective Address utilised is always

just RA, i.e. the computation of EA is stored in RA after it is actually used.
• LF - Load/Store Fail or Fault First: for any reason Load or Store Vectors may be truncated to (at least)

one element, and VL altered to indicate such.
• VLi - Inclusive Data-Dependent Fail-First: the failing element is included in the Truncated Vector.
• els - Element-strided Mode: the element index (after REMAP) is multiplied by the immediate offset (or

Scalar RB for Indexed). Restrictions apply.

When VLi=0 on Store Operations the Memory update does not take place on the element that failed. EA does
not update into RA on Load/Store with Update instructions either.

CHAPTER 9. LOAD/STORE MODE 110

LD/ST immediate

The table for {SVP64 Chapter} for immed(RA) which is RM.MODE (bits 19:23 of RM) is:

0 1 2 3 4 description
0 0 0 zz els simple mode
0 0 1 PI LF post-increment and Fault-First
1 0 N zz els sat mode: N=0/1 u/s
VLi 1 inv CR-bit ffirst CR sel

The els bit is only relevant when RA.isvec is clear: this indicates whether stride is unit or element:

if RA.isvec:
svctx.ldstmode = indexed

elif els == 0:
svctx.ldstmode = unitstride

elif immediate != 0:
svctx.ldstmode = elementstride

An immediate of zero is a safety-valve to allow LD-VSPLAT: in effect the multiplication of the immediate-offset by
zero results in reading from the exact same memory location, even with a Vector register. (Normally this type of
behaviour is reserved for the mapreduce modes)

For LD-VSPLAT, on non-cache-inhibited Loads, the read can occur just the once and be copied, rather than hitting
the Data Cache multiple times with the same memory read at the same location. The benefit of Cache-inhibited
LD-splats is that it allows for memory-mapped peripherals to have multiple data values read in quick succession
and stored in sequentially numbered registers (but, see Note below).

For non-cache-inhibited ST from a vector source onto a scalar destination: with the Vector loop effectively
creating multiple memory writes to the same location, we can deduce that the last of these will be the “successful”
one. Thus, implementations are free and clear to optimise out the overwriting STs, leaving just the last one
as the “winner”. Bear in mind that predicate masks will skip some elements (in source non-zeroing mode).
Cache-inhibited ST operations on the other hand MUST write out a Vector source multiple successive times to
the exact same Scalar destination. Just like Cache-inhibited LDs, multiple values may be written out in quick
succession to a memory-mapped peripheral from sequentially-numbered registers.

Note that any memory location may be Cache-inhibited (Power ISA v3.1, Book III, 1.6.1, p1033)

Programmer’s Note: an immediate also with a Scalar source as a “VSPLAT” mode is simply not possible: there
are not enough Mode bits. One single Scalar Load operation may be used instead, followed by any arithmetic
operation (including a simple mv) in “Splat” mode.

LD/ST Indexed

The modes for RA+RB indexed version are slightly different but are the same RM.MODE bits (19:23 of RM):

0 1 2 3 4 description
els 0 SEA dz sz simple mode
VLi 1 inv CR-bit ffirst CR sel

Vector Indexed Strided Mode is qualified as follows:

if els and !RA.isvec and !RB.isvec:
svctx.ldstmode = elementstride

A summary of the effect of Vectorisation of src or dest:

imm(RA) RT.v RA.v no stride allowed

CHAPTER 9. LOAD/STORE MODE 111

imm(RA) RT.s RA.v no stride allowed
imm(RA) RT.v RA.s stride-select allowed
imm(RA) RT.s RA.s not vectorised
RA,RB RT.v {RA|RB}.v Standard Indexed
RA,RB RT.s {RA|RB}.v Indexed but single LD (no VSPLAT)
RA,RB RT.v {RA&RB}.s VSPLAT possible. stride selectable
RA,RB RT.s {RA&RB}.s not vectorised (scalar identity)

Signed Effective Address computation is only relevant for Vector Indexed Mode, when elwidth overrides are
applied. The source override applies to RB, and before adding to RA in order to calculate the Effective Address,
if SEA is set RB is sign-extended from elwidth bits to the full 64 bits. For other Modes (ffirst, saturate), all EA
computation with elwidth overrides is unsigned. RA is not altered (not truncated) by element-width overrides.

Note that cache-inhibited LD/ST when VSPLAT is activated will perform multiple LD/ST operations, sequen-
tially. Even with scalar src a Cache-inhibited LD will read the same memory location multiple times, storing the
result in successive Vector destination registers. This because the cache-inhibit instructions are typically used to
read and write memory-mapped peripherals. If a genuine cache-inhibited LD-VSPLAT is required then a single
scalar cache-inhibited LD should be performed, followed by a VSPLAT-augmented mv, copying the one scalar
value into multiple register destinations.

Note also that cache-inhibited VSPLAT with Data-Dependent Fail-First is possible. This allows for example to
issue a massive batch of memory-mapped peripheral reads, stopping at the first NULL-terminated character and
truncating VL to that point. No branch is needed to issue that large burst of LDs, which may be valuable in
Embedded scenarios.

9.1.4 Vectorisation of Scalar Power ISA v3.0B

Scalar Power ISA Load/Store operations may be seen from [[isa/fixedload]] and [[isa/fixedstore]] pseudocode to
be of the form:

lbux RT, RA, RB
EA <- (RA) + (RB)
RT <- MEM(EA)

and for immediate variants:

lb RT,D(RA)
EA <- RA + EXTS(D)
RT <- MEM(EA)

Thus in the first example, the source registers may each be independently marked as scalar or vector, and likewise
the destination; in the second example only the one source and one dest may be marked as scalar or vector.

Thus we can see that Vector Indexed may be covered, and, as demonstrated with the pseudocode below, the
immediate can be used to give unit stride or element stride. With there being no way to tell which from the
Power v3.0B Scalar opcode alone, the choice is provided instead by the SV Context.

LD not VLD! format - ldop RT, immed(RA)
op_width: lb=1, lh=2, lw=4, ld=8
op_load(RT, RA, op_width, immed, svctx, RAupdate):
ps = get_pred_val(FALSE, RA); # predication on src
pd = get_pred_val(FALSE, RT); # ... AND on dest
for (i=0, j=0, u=0; i < VL && j < VL;):
skip nonpredicates elements
if (RA.isvec) while (!(ps & 1<<i)) i++;
if (RAupdate.isvec) while (!(ps & 1<<u)) u++;
if (RT.isvec) while (!(pd & 1<<j)) j++;
if postinc:

offs = 0; # added afterwards

CHAPTER 9. LOAD/STORE MODE 112

if RA.isvec: srcbase = ireg[RA+i]
else srcbase = ireg[RA]

elif svctx.ldstmode == elementstride:
element stride mode
srcbase = ireg[RA]
offs = i * immed # j*immed for a ST

elif svctx.ldstmode == unitstride:
unit stride mode
srcbase = ireg[RA]
offs = immed + (i * op_width) # j*op_width for ST

elif RA.isvec:
quirky Vector indexed mode but with an immediate
srcbase = ireg[RA+i]
offs = immed;

else
standard scalar mode (but predicated)
no stride multiplier means VSPLAT mode
srcbase = ireg[RA]
offs = immed

compute EA
EA = srcbase + offs
load from memory
ireg[RT+j] <= MEM[EA];
check post-increment of EA
if postinc: EA = srcbase + immed;
update RA?
if RAupdate: ireg[RAupdate+u] = EA;
if (!RT.isvec)

break # destination scalar, end now
if (RA.isvec) i++;
if (RAupdate.isvec) u++;
if (RT.isvec) j++;

Indexed LD is:

format: ldop RT, RA, RB
function op_ldx(RT, RA, RB, RAupdate=False) # LD not VLD!
ps = get_pred_val(FALSE, RA); # predication on src
pd = get_pred_val(FALSE, RT); # ... AND on dest
for (i=0, j=0, k=0, u=0; i < VL && j < VL && k < VL):

skip nonpredicated RA, RB and RT
if (RA.isvec) while (!(ps & 1<<i)) i++;
if (RAupdate.isvec) while (!(ps & 1<<u)) u++;
if (RB.isvec) while (!(ps & 1<<k)) k++;
if (RT.isvec) while (!(pd & 1<<j)) j++;
if svctx.ldstmode == elementstride:

EA = ireg[RA] + ireg[RB]*j # register-strided
else

EA = ireg[RA+i] + ireg[RB+k] # indexed address
if RAupdate: ireg[RAupdate+u] = EA
ireg[RT+j] <= MEM[EA];
if (!RT.isvec)

break # destination scalar, end immediately
if (RA.isvec) i++;
if (RAupdate.isvec) u++;

CHAPTER 9. LOAD/STORE MODE 113

if (RB.isvec) k++;
if (RT.isvec) j++;

Note that Element-Strided uses the Destination Step because with both sources being Scalar as a prerequisite
condition of activation of Element-Stride Mode, the source step (being Scalar) would never advance.

Note in both cases that {SVP64 Chapter} allows RA-as-a-dest in “update” mode (ldux) to be effectively a
completely different register from RA-as-a-source. This because there is room in svp64 to extend RA-as-src as
well as RA-as-dest, both independently as scalar or vector and independently extending their range.

Programmer’s note: being able to set RA-as-a-source as separate from RA-as-a-destination as Scalar is extremely
valuable once it is remembered that Simple-V element operations must be in Program Order, especially in
loops, for saving on multiple address computations. Care does have to be taken however that RA-as-src is not
overwritten by RA-as-dest unless intentionally desired, especially in element-strided Mode.

9.1.5 LD/ST Indexed vs Indexed REMAP

Unfortunately the word “Indexed” is used twice in completely different contexts, potentially causing confusion.

• There has existed instructions in the Power ISA ld RT,RA,RB since its creation: these are called “LD/ST
Indexed” instructions and their name and meaning is well-established.

• There now exists, in Simple-V, a {REMAP subsystem} mode called “Indexed” Mode that can be applied
to any instruction including those named LD/ST Indexed.

Whilst it may be costly in terms of register reads to allow REMAP Indexed Mode to be applied to any Vectorised
LD/ST Indexed operation such as sv.ld *RT,RA,*RB, or even misleadingly labelled as redundant, firstly the
strict application of the RISC Paradigm that Simple-V follows makes it awkward to consider preventing the
application of Indexed REMAP to such operations, and secondly they are not actually the same at all.

Indexed REMAP, as applied to RB in the instruction sv.ld *RT,RA,*RB effectively performs an in-place re-
ordering of the offsets, RB. To achieve the same effect without Indexed REMAP would require taking a copy of
the Vector of offsets starting at RB, manually explicitly reordering them, and finally using the copy of re-ordered
offsets in a non-REMAP’ed sv.ld. Using non-strided LD as an example, pseudocode showing what actually
occurs, where the pseudocode for indexed_remap may be found in {REMAP subsystem}:

sv.ld *RT,RA,*RB with Index REMAP applied to RB
for i in 0..VL-1:

if remap.indexed:
rb_idx = indexed_remap(i) # remap

else:
rb_idx = i # use the index as-is

EA = GPR(RA) + GPR(RB+rb_idx)
GPR(RT+i) = MEM(EA, 8)

Thus it can be seen that the use of Indexed REMAP saves copying and manual reordering of the Vector of RB
offsets.

9.1.6 LD/ST ffirst (Fault-First)

LD/ST ffirst treats the first LD/ST in a vector (element 0 if REMAP is not active and predication is not
applied) as an ordinary one, with all behaviour with respect to Interrupts Exceptions Page Faults Memory
Management being identical in every regard to Scalar v3.0 Power ISA LD/ST. However for elements 1 and above,
if an exception would occur, then VL is truncated to the previous element: the exception is not then raised
because the LD/ST that would otherwise have caused an exception is required to be cancelled. Additionally an
implementor may choose to truncate VL for any arbitrary reason except for the very first.

ffirst LD/ST to multiple pages via a Vectorised Index base is considered a security risk due to the abuse of
probing multiple pages in rapid succession and getting speculative feedback on which pages would fail. Therefore

CHAPTER 9. LOAD/STORE MODE 114

Vector Indexed LD/ST is prohibited entirely, and the Mode bit instead used for element-strided LD/ST. See
https://bugs.libre-soc.org/show_bug.cgi?id=561

for(i = 0; i < VL; i++)
reg[rt + i] = mem[reg[ra] + i * reg[rb]];

High security implementations where any kind of speculative probing of memory pages is considered a risk should
take advantage of the fact that implementations may truncate VL at any point, without requiring software to
be rewritten and made non-portable. Such implementations may choose to always set VL=1 which will have
the effect of terminating any speculative probing (and also adversely affect performance), but will at least not
require applications to be rewritten.

Low-performance simpler hardware implementations may also choose (always) to also set VL=1 as the bare
minimum compliant implementation of LD/ST Fail-First. It is however critically important to remember that
the first element LD/ST MUST be treated as an ordinary LD/ST, i.e. MUST raise exceptions exactly like an
ordinary LD/ST.

For ffirst LD/STs, VL may be truncated arbitrarily to a nonzero value for any implementation-specific reason.
For example: it is perfectly reasonable for implementations to alter VL when ffirst LD or ST operations are
initiated on a nonaligned boundary, such that within a loop the subsequent iteration of that loop begins the
following ffirst LD/ST operations on an aligned boundary such as the beginning of a cache line, or beginning of
a Virtual Memory page. Likewise, to reduce workloads or balance resources.

When Predication is used, the “first” element is considered to be the first non-predicated element rather than
specifically srcstep=0.

Vertical-First Mode is slightly strange in that only one element at a time is ever executed anyway. Given that
programmers may legitimately choose to alter srcstep and dststep in non-sequential order as part of explicit
loops, it is neither possible nor safe to make speculative assumptions about future LD/STs. Therefore, Fail-First
LD/ST in Vertical-First is UNDEFINED. This is very different from Arithmetic (Data-dependent) FFirst where
Vertical-First Mode is fully deterministic, not speculative.

9.1.7 Data-Dependent Fail-First (not Fail/Fault-First)

Not to be confused with Fail/Fault First, Data-Fail-First performs an additional check on the data, and if
the test fails then VL is truncated and further looping terminates. This is precisely the same as Arithmetic
Data-Dependent Fail-First, the only difference being that the result comes from the LD/ST rather than from an
Arithmetic operation.

Also a crucial difference between Arithmetic and LD/ST Data-Dependent Fail-First: except for Store-Conditional
a 4-bit Condition Register Field test is created for testing purposes but not stored (thus there is no RC1 Mode as
there is in Arithmetic). The reason why a CR Field is not stored is because Load/Store, particularly the Update
instructions, is already expensive in register terms, and adding an extra Vector write would be too costly in
hardware.

Programmer’s note: Programmers may use Data-Dependent Load with a test to truncate VL, and may then
follow up with a sv.cmpi or other operation. The important aspect is that the Vector Load truncated on finding
a NULL pointer, for example.

Programmer’s note: Load-with-Update may be used to update the register used in Effective Address computation
of th next element. This may be used to perform single-linked-list walking, where Data-Dependent Fail-First
terminates and truncates the Vector at the first NULL.

Load/Store Data-Dependent Fail-First, VLi=0

In the case of Store operations there is a quirk when VLi (VL inclusive is “Valid”) is clear. Bear in mind the
criteria is that the truncated Vector of results, when VLi is clear, must all pass the “test”, but when VLi is set
the current failed test is permitted to be included. Thus, the actual update (store) to Memory is not permitted
to take place should the test fail.

https://bugs.libre-soc.org/show_bug.cgi?id=561

CHAPTER 9. LOAD/STORE MODE 115

Additionally in any Load/Store with Update instruction, when VLi=0 and a test fails then RA does not receive
a copy of the Effective Address. Hardware implementations with Out-of-Order Micro-Architectures should use
speculative Shadow-Hold and Cancellation (or other Transactional Rollback mechanism) when the test fails.

Load/Store Data-Dependent Fail-First, VLi=1

By contrast if VLi=1 and the test fails, the Store may proceed and then looping terminates. In this way, when
Inclusive the Vector of Truncated results contains the first-failed data (including RA on Updates)

Below is an example of loading the starting addresses of Linked-List nodes. If VLi=1 it will load the NULL
pointer into the Vector of results. If however VLi=0 it will exclude the NULL pointer by truncating VL to one
Element earlier.

Programmer’s Note: by also setting the RC1 qualifier as well as setting VLi=1 it is possible to establish a
Predicate Mask such that the first zero in the predicate will be the NULL pointer

RT=1 # vec - deliberately overlaps by one with RA
RA=0 # vec - first one is valid, contains ptr
imm = 8 # offset_of(ptr->next)
for i in range(VL):

this part is the Scalar Defined Word (standard scalar ld operation)
EA = GPR(RA+i) + imm # ptr + offset(next)
data = MEM(EA, 8) # 64-bit address of ptr->next
was a normal vector-ld up to this point. now the Data-Fail-First
cr_test = conditions(data)
if Rc=1 or RC1: CR.field(i) = cr_test # only store if Rc=1/RC1
action_load = True
if cr_test.EQ == testbit: # check if zero

if VLI then
VL = i+1 # update VL, inclusive

else
VL = i # update VL, exclusive current
action_load = False # current load excluded

stop = True # stop looping
if action_load:

GPR(RT+i) = data # happens to be read on next loop!
if stop: break

Data-Dependent Fail-First on Store-Conditional (Rc=1)

There are very few instructions that allow Rc=1 for Load/Store: one of those is the stdcx. and other Atomic
Store-Conditional instructions. With Simple-V being a loop around Scalar instructions strictly obeying Scalar
Program Order a Horizontal-First Fail-First loop on an Atomic Store-Conditional will always fail the second
and all other Store-Conditional instructions because Load-Reservation and Store-Conditional are required to be
executed in pairs.

By contrast, in Vertical-First Mode it is in fact possible to issue the pairs, and consequently allowing Vectorised
Data-Dependent Fail-First is useful.

Programmer’s note: Care should be taken when VL is truncated in Vertical-First Mode.

Future potential

Although Rc=1 on LD/ST is a rare occurrence at present, future versions of Power ISA might conceivably have
Rc=1 LD/ST Scalar instructions, and with the SVP64 Vectorisation Prefixing being itself a RISC-paradigm that
is itself fully-independent of the Scalar Suffix Defined Words, prohibiting the possibility of Rc=1 Data-Dependent
Mode on future potential LD/ST operations is not strategically sound.

CHAPTER 9. LOAD/STORE MODE 116

9.1.8 LOAD/STORE Elwidths

Loads and Stores are almost unique in that the Power Scalar ISA provides a width for the operation (lb, lh, lw,
ld). Only extsb and others like it provide an explicit operation width. There are therefore three widths involved:

• operation width (lb=8, lh=16, lw=32, ld=64)
• src element width override (8/16/32/default)
• destination element width override (8/16/32/default)

Some care is therefore needed to express and make clear the transformations, which are expressly in this order:

• Calculate the Effective Address from RA at full width but (on Indexed Load) allow srcwidth overrides on
RB

• Load at the operation width (lb/lh/lw/ld) as usual
• byte-reversal as usual
• Non-saturated mode:
• zero-extension or truncation from operation width to dest elwidth
• place result in destination at dest elwidth
• Saturated mode:
• Sign-extension or truncation from operation width to dest width
• signed/unsigned saturation down to dest elwidth

In order to respect Power v3.0B Scalar behaviour the memory side is treated effectively as completely separate
and distinct from SV augmentation. This is primarily down to quirks surrounding LE/BE and byte-reversal.

It is rather unfortunately possible to request an elwidth override on the memory side which does not mesh with
the overridden operation width: these result in UNDEFINED behaviour. The reason is that the effect of attempting
a 64-bit sv.ld operation with a source elwidth override of 8/16/32 would result in overlapping memory requests,
particularly on unit and element strided operations. Thus it is UNDEFINED when the elwidth is smaller than
the memory operation width. Examples include sv.lw/sw=16/els which requests (overlapping) 4-byte memory
reads offset from each other at 2-byte intervals. Store likewise is also UNDEFINED where the dest elwidth override
is less than the operation width.

Note the following regarding the pseudocode to follow:

• scalar identity behaviour SV Context parameter conditions turn this into a straight absolute fully-
compliant Scalar v3.0B LD operation

• brev selects whether the operation is the byte-reversed variant (ldbrx rather than ld)
• op_width specifies the operation width (lb, lh, lw, ld) as a “normal” part of Scalar v3.0B LD
• imm_offs specifies the immediate offset ld r3, imm_offs(r5), again as a “normal” part of Scalar v3.0B

LD
• svctx specifies the SV Context and includes VL as well as source and destination elwidth overrides.

Below is the pseudocode for Unit-Strided LD (which includes Vector capability). Observe in particular that RA,
as the base address in both Immediate and Indexed LD/ST, does not have element-width overriding applied to it.

Note that predication, predication-zeroing, and other modes except saturation have all been removed, for clarity
and simplicity:

LD not VLD!
this covers unit stride mode and a type of vector offset
function op_ld(RT, RA, op_width, imm_offs, svctx)
for (int i = 0, int j = 0; i < svctx.VL && j < svctx.VL):
if not svctx.unit/el-strided:

strange vector mode, compute 64 bit address which is
not polymorphic! elwidth hardcoded to 64 here
srcbase = get_polymorphed_reg(RA, 64, i)

else:
unit / element stride mode, compute 64 bit address
srcbase = get_polymorphed_reg(RA, 64, 0)

CHAPTER 9. LOAD/STORE MODE 117

adjust for unit/el-stride
srcbase +=

read the underlying memory
memread <= MEM(srcbase + imm_offs, op_width)

check saturation.
if svpctx.saturation_mode:

... saturation adjustment...
memread = clamp(memread, op_width, svctx.dest_elwidth)

else:
truncate/extend to over-ridden dest width.
memread = adjust_wid(memread, op_width, svctx.dest_elwidth)

takes care of inserting memory-read (now correctly byteswapped)
into regfile underlying LE-defined order, into the right place
within the NEON-like register, respecting destination element
bitwidth, and the element index (j)
set_polymorphed_reg(RT, svctx.dest_elwidth, j, memread)

increments both src and dest element indices (no predication here)
i++;
j++;

Note above that the source elwidth is not used at all in LD-immediate.

For LD/Indexed, the key is that in the calculation of the Effective Address, RA has no elwidth override but RB
does. Pseudocode below is simplified for clarity: predication and all modes except saturation are removed:

LD not VLD! ld*rx if brev else ld*
function op_ld(RT, RA, RB, op_width, svctx, brev)
for (int i = 0, int j = 0; i < svctx.VL && j < svctx.VL):
if not svctx.el-strided:

RA not polymorphic! elwidth hardcoded to 64 here
srcbase = get_polymorphed_reg(RA, 64, i)

else:
element stride mode, again RA not polymorphic
srcbase = get_polymorphed_reg(RA, 64, 0)

RB *is* polymorphic
offs = get_polymorphed_reg(RB, svctx.src_elwidth, i)
sign-extend
if svctx.SEA: offs = sext(offs, svctx.src_elwidth, 64)

takes care of (merges) processor LE/BE and ld/ldbrx
bytereverse = brev XNOR MSR.LE

read the underlying memory
memread <= MEM(srcbase + offs, op_width)

optionally performs byteswap at op width
if (bytereverse):

memread = byteswap(memread, op_width)

if svpctx.saturation_mode:
... saturation adjustment...
memread = clamp(memread, op_width, svctx.dest_elwidth)

else:

CHAPTER 9. LOAD/STORE MODE 118

Figure 9.1: Load/Store remap

truncate/extend to over-ridden dest width.
memread = adjust_wid(memread, op_width, svctx.dest_elwidth)

takes care of inserting memory-read (now correctly byteswapped)
into regfile underlying LE-defined order, into the right place
within the NEON-like register, respecting destination element
bitwidth, and the element index (j)
set_polymorphed_reg(RT, svctx.dest_elwidth, j, memread)

increments both src and dest element indices (no predication here)
i++;
j++;

9.1.9 Remapped LD/ST

In the {REMAP subsystem} page the concept of “Remapping” is described. Whilst it is expensive to set up
(2 64-bit opcodes minimum) it provides a way to arbitrarily perform 1D, 2D and 3D “remapping” of up to 64
elements worth of LDs or STs. The usual interest in such re-mapping is for example in separating out 24-bit
RGB channel data into separate contiguous registers. NEON covers this as shown in the diagram below:

REMAP easily covers this capability, and with dest elwidth overrides and saturation may do so with built-in
conversion that would normally require additional width-extension, sign-extension and min/max Vectorised
instructions as post-processing stages.

CHAPTER 9. LOAD/STORE MODE 119

Thus we do not need to provide specialist LD/ST “Structure Packed” opcodes because the generic abstracted
concept of “Remapping”, when applied to LD/ST, will give that same capability, with far more flexibility.

It is worth noting that Pack/Unpack Modes of SVSTATE, which may be established through svstep, are also an
easy way to perform regular Structure Packing, at the vec2/vec3/vec4 granularity level. Beyond that, REMAP
will need to be used.

Parallel Reduction REMAP

No REMAP Schedule is prohibited in SVP64 because the RISC-paradigm Prefix is completely separate from the
RISC-paradigm Scalar Defined Words. Although obscure there does exist the outside possibility that a potential
use for Parallel Reduction Schedules on LD/ST would find a use in Computer Science. Readers are invited to
contact the authors of this document if one is ever found.

[[!tag standards]]

Chapter 10

Condition Register Fields Mode

10.1 Condition Register SVP64 Operations

DRAFT STATUS

Links:

• https://bugs.libre-soc.org/show_bug.cgi?id=687
• https://bugs.libre-soc.org/show_bug.cgi?id=936 write on failfirst
• {SVP64 Chapter}
• {Branch Mode}
• {CR Weird ops}
• [[openpower/isa/sprset]]
• [[openpower/isa/condition]]
• [[openpower/isa/comparefixed]]

Condition Register Fields are only 4 bits wide: this presents some interesting conceptual challenges for SVP64,
which was designed primarily for vectors of arithmetic and logical operations. However if predicates may be bits
of CR Fields it makes sense to extend Simple-V to cover CR Operations, especially given that Vectorised Rc=1
may be processed by Vectorised CR Operations that usefully in turn may become Predicate Masks to yet more
Vector operations, like so:

sv.cmpi/ew=8 *B,*ra,0 # compare bytes against zero
sv.cmpi/ew=8 *B2,*ra,13. # and against newline
sv.cror PM.EQ,B.EQ,B2.EQ # OR compares to create mask
sv.stb/sm=EQ ... # store only nonzero/newline

Element width however is clearly meaningless for a 4-bit collation of Conditions, EQ LT GE SO. Likewise,
arithmetic saturation (an important part of Arithmetic SVP64) has no meaning. An alternative Mode Format is
required, and given that elwidths are meaningless for CR Fields the bits in SVP64 RM may be used for other
purposes.

This alternative mapping only applies to instructions that only reference a CR Field or CR bit as the sole
exclusive result. This section does not apply to instructions which primarily produce arithmetic results that
also, as an aside, produce a corresponding CR Field (such as when Rc=1). Instructions that involve Rc=1 are
definitively arithmetic in nature, where the corresponding Condition Register Field can be considered to be a
“co-result”. Such CR Field “co-result” arithmeric operations are firmly out of scope for this section, being covered
fully by {Arithmetic Mode}.

• Examples of v3.0B instructions to which this section does apply is
• mfcr and cmpi (3 bit operands) and
• crnor and crand (5 bit operands).

120

https://bugs.libre-soc.org/show_bug.cgi?id=687
https://bugs.libre-soc.org/show_bug.cgi?id=936

CHAPTER 10. CONDITION REGISTER FIELDS MODE 121

• Examples to which this section does not apply include fadds. and subf. which both produce arithmetic
results (and a CR Field co-result).

• mtcr is considered [[openpower/sv/normal]] because it refers to the entire 32-bit Condition Register rather
than to CR Fields.

The CR Mode Format still applies to sv.cmpi because despite taking a GPR as input, the output from the Base
Scalar v3.0B cmpi instruction is purely to a Condition Register Field.

Other modes are still applicable and include:

• Data-dependent fail-first. useful to truncate VL based on analysis of a Condition Register result bit.
• Reduction. Reduction is useful for analysing a Vector of Condition Register Fields and reducing it to one

single Condition Register Field.

Predicate-result does not make any sense because when Rc=1 a co-result is created (a CR Field). Testing the
co-result allows the decision to be made to store or not store the main result, and for CR Ops the CR Field
result is the main result.

10.1.1 Format

SVP64 RM MODE (includes ELWIDTH_SRC bits) for CR-based operations:

6 7 19-20 21 22 23 description
/ / 0 RG 0 dz sz simple mode
/ / 0 RG 1 dz sz scalar reduce mode (mapreduce)
zz SNZ 1 VLI inv CR-bit Ffirst 3-bit mode
/ SNZ 1 VLI inv dz sz Ffirst 5-bit mode (implies CR-bit from result)

Fields:

• sz / dz if predication is enabled will put zeros into the dest (or as src in the case of twin pred) when the
predicate bit is zero. otherwise the element is ignored or skipped, depending on context.

• zz set both sz and dz equal to this flag
• SNZ In fail-first mode, on the bit being tested, when sz=1 and SNZ=1 a value “1” is put in place of “0”.
• inv CR-bit just as in branches (BO) these bits allow testing of a CR bit and whether it is set (inv=0) or

unset (inv=1)
• RG inverts the Vector Loop order (VL-1 downto 0) rather than the normal 0..VL-1
• SVM sets “subvector” reduce mode
• VLi VL inclusive: in fail-first mode, the truncation of VL includes the current element at the failure point

rather than excludes it from the count.

10.1.2 Data-dependent fail-first on CR operations

The principle of data-dependent fail-first is that if, during the course of sequentially evaluating an element’s
Condition Test, one such test is encountered which fails, then VL (Vector Length) is truncated (set) at that
point. In the case of Arithmetic SVP64 Operations the Condition Register Field generated from Rc=1 is used as
the basis for the truncation decision. However with CR-based operations that CR Field result to be tested is
provided by the operation itself.

Data-dependent SVP64 Vectorised Operations involving the creation or modification of a CR can require an
extra two bits, which are not available in the compact space of the SVP64 RM MODE Field. With the concept of
element width overrides being meaningless for CR Fields it is possible to use the ELWIDTH field for alternative
purposes.

Condition Register based operations such as sv.mfcr and sv.crand can thus be made more flexible. However
the rules that apply in this section also apply to future CR-based instructions.

CHAPTER 10. CONDITION REGISTER FIELDS MODE 122

There are two primary different types of CR operations:

• Those which have a 3-bit operand field (referring to a CR Field)
• Those which have a 5-bit operand (referring to a bit within the whole 32-bit CR)

Examining these two types it is observed that the difference may be considered to be that the 5-bit variant
already provides the prerequisite information about which CR Field bit (EQ, GE, LT, SO) is to be operated on
by the instruction. Thus, logically, we may set the following rule:

• When a 5-bit CR Result field is used in an instruction, the 5-bit variant of Data-Dependent Fail-First must
be used. i.e. the bit of the CR field to be tested is the one that has just been modified (created) by the
operation.

• When a 3-bit CR Result field is used the 3-bit variant must be used, providing as it does the missing CRbit
field in order to select which CR Field bit of the result shall be tested (EQ, LE, GE, SO)

The reason why the 3-bit CR variant needs the additional CR-bit field should be obvious from the fact that the
3-bit CR Field from the base Power ISA v3.0B operation clearly does not contain and is missing the two CR
Field Selector bits. Thus, these two bits (to select EQ, LE, GE or SO) must be provided in another way.

Examples of the former type:

• crand, cror, crnor. These all are 5-bit (BA, BB, BT). The bit to be tested against inv is the one selected
by BT

• mcrf. This has only 3-bit (BF, BFA). In order to select the bit to be tested, the alternative encoding must
be used. With CRbit coming from the SVP64 RM bits 22-23 the bit of BF to be tested is identified.

Just as with SVP64 {Branch Mode} there is the option to truncate VL to include the element being tested
(VLi=1) and to exclude it (VLi=0).

Also exactly as with {Arithmetic Mode} fail-first, VL cannot, unlike {Load/Store Mode}, be set to an arbitrary
value. Deterministic behaviour is required.

10.1.3 Reduction and Iteration

Bearing in mind as described in the {SVP64 Appendix} SVP64 Horizontal Reduction is a deterministic schedule
on top of base Scalar v3.0 operations, the same rules apply to CR Operations, i.e. that programmers must follow
certain conventions in order for an end result of a reduction to be achieved. Unlike other Vector ISAs there are
no explicit reduction opcodes in SVP64: Schedules however achieve the same effect.

Due to these conventions only reduction on operations such as crand and cror are meaningful because these
have Condition Register Fields as both input and output. Meaningless operations are not prohibited because the
cost in hardware of doing so is prohibitive, but neither are they UNDEFINED. Implementations are still required
to execute them but are at liberty to optimise out any operations that would ultimately be overwritten, as long
as Strict Program Order is still obvservable by the programmer.

Also bear in mind that ‘Reverse Gear’ may be enabled, which can be used in combination with overlapping CR
operations to iteratively accumulate results. Issuing a sv.crand operation for example with BA differing from BB
by one Condition Register Field would result in a cascade effect, where the first-encountered CR Field would set
the result to zero, and also all subsequent CR Field elements thereafter:

sv.crand/mr/rg CR4.ge.v, CR5.ge.v, CR4.ge.v
for i in VL-1 downto 0 # reverse gear

CR.field[4+i].ge &= CR.field[5+i].ge

sv.crxor with reduction would be particularly useful for parity calculation for example, although there are
many ways in which the same calculation could be carried out (parityw) after transferring a vector of CR Fields
to a GPR using crweird operations.

Implementations are free and clear to optimise these reductions in any way they see fit, as long as the end-result
is compatible with Strict Program Order being observed, and Interrupt latency is not adversely impacted. Good

CHAPTER 10. CONDITION REGISTER FIELDS MODE 123

examples include sv.cror/mr which is a cumulative ORing of a Vector of CR Field bits, and consequently an
easy target for parallelising.

10.1.4 Unusual and quirky CR operations

cmp and other compare ops

cmp and cmpi etc take GPRs as sources and create a CR Field as a result.

cmpli BF,L,RA,UI
cmpeqb BF,RA,RB

With ELWIDTH applying to the source GPR operands this is perfectly fine.

crweird operations

There are 4 weird CR-GPR operations and one reasonable one in the {CR Weird ops} set:

• crrweird
• mtcrweird
• crweirder
• crweird
• mcrfm - reasonably normal and referring to CR Fields for src and dest.

The “weird” operations have a non-standard behaviour, being able to treat individual bits of a GPR effectively
as elements. They are expected to be Micro-coded by most Hardware implementations.

10.1.5 Effectively-separate Vector and Scalar Condition Register file

As mentioned in the introduction on {SVP64 Chapter} some prohibitions are made on instructions involving
Condition Registers that allow implementors to actually consider the Scalar CR (fields CR0-CR7) as a completely
separate register file from the Vector CRs (fields CR8-CR127).

The complications arise for existing Hardware implementations due to Power ISA not having had “Conditional
Execution” added. Adding entirely new pipelines and a new Vector CR Register file is a much easier proposition
to consider.

The prohibitions utilise the CR Field numbers implicitly to split out Vectorised CR operations to be considered
completely separare and distinct from Scalar CR operations even though they both use the same binary encoding.
This does in turn mean that at the Decode Phase it becomes necessary to examine not only the operation
(sv.crand, sv.cmp) but also the CR Field numbers as well as whether, in the EXTRA2/3 Mode bits, the
operands are Vectorised.

A future version of Power ISA, where SVP64Single is proposed, would in fact introduce “Conditional Execution”,
including for VSX. At which point this prohibition becomes moot as Predication would be required to be added
into the existing Scalar (and PackedSIMD VSX) side of existing Power ISA implementations.

[[!tag standards]]

Chapter 11

Branch Mode

11.1 SVP64 Branch Conditional behaviour

DRAFT STATUS

Please note: although similar, SVP64 Branch instructions should be considered completely separate and distinct
from standard scalar OpenPOWER-approved v3.0B branches. v3.0B branches are in no way impacted,
altered, changed or modified in any way, shape or form by the SVP64 Vectorised Variants.

It is also extremely important to note that Branches are the sole pseudo-exception in SVP64 to Scalar Identity
Behaviour. SVP64 Branches contain additional modes that are useful for scalar operations (i.e. even when
VL=1 or when using single-bit predication).

Links

• https://bugs.libre-soc.org/show_bug.cgi?id=664
• http://lists.libre-soc.org/pipermail/libre-soc-dev/2021-August/003416.html
• https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004678.html
• Branch Divergence https://jbush001.github.io/2014/12/07/branch-divergence-in-parallel-kernels.

html
• {Branch pseudocode}
• {CR Weird ops}
• TODO

11.1.1 Rationale

Scalar 3.0B Branch Conditional operations, bc, bctar etc. test a Condition Register. However for parallel
processing it is simply impossible to perform multiple independent branches: the Program Counter simply cannot
branch to multiple destinations based on multiple conditions. The best that can be done is to test multiple
Conditions and make a decision of a single branch, based on analysis of a Vector of CR Fields which have just
been calculated from a Vector of results.

In 3D Shader binaries, which are inherently parallelised and predicated, testing all or some results and branching
based on multiple tests is extremely common, and a fundamental part of Shader Compilers. Example: without
such multi-condition test-and-branch, if a predicate mask is all zeros a large batch of instructions may be masked
out to nop, and it would waste CPU cycles to run them. 3D GPU ISAs can test for this scenario and, with
the appropriate predicate-analysis instruction, jump over fully-masked-out operations, by spotting that all
Conditions are false.

Unless Branches are aware and capable of such analysis, additional instructions would be required which perform
Horizontal Cumulative analysis of Vectorised Condition Register Fields, in order to reduce the Vector of CR

124

https://bugs.libre-soc.org/show_bug.cgi?id=664
http://lists.libre-soc.org/pipermail/libre-soc-dev/2021-August/003416.html
https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004678.html
https://jbush001.github.io/2014/12/07/branch-divergence-in-parallel-kernels.html
https://jbush001.github.io/2014/12/07/branch-divergence-in-parallel-kernels.html
https://git.libre-soc.org/?p=openpower-isa.git;a=commitdiff;h=fa99590eeb61e63b2d2ea81f303b9b4320e3bbe1

CHAPTER 11. BRANCH MODE 125

Fields down to one single yes or no decision that a Scalar-only v3.0B Branch-Conditional could cope with. Such
instructions would be unavoidable, required, and costly by comparison to a single Vector-aware Branch. Therefore,
in order to be commercially competitive, sv.bc and other Vector-aware Branch Conditional instructions are a
high priority for 3D GPU (and OpenCL-style) workloads.

Given that Power ISA v3.0B is already quite powerful, particularly the Condition Registers and their interaction
with Branches, there are opportunities to create extremely flexible and compact Vectorised Branch behaviour.
In addition, the side-effects (updating of CTR, truncation of VL, described below) make it a useful instruction
even if the branch points to the next instruction (no actual branch).

11.1.2 Overview

When considering an “array” of branch-tests, there are four primarily-useful modes: AND, OR, NAND and NOR
of all Conditions. NAND and NOR may be synthesised from AND and OR by inverting BO[1] which just leaves
two modes:

• Branch takes place on the first CR Field test to succeed (a Great Big OR of all condition tests). Exit
occurs on the first successful test.

• Branch takes place only if all CR field tests succeed: a Great Big AND of all condition tests. Exit occurs
on the first failed test.

Early-exit is enacted such that the Vectorised Branch does not perform needless extra tests, which will help
reduce reads on the Condition Register file.

Note: Early-exit is MANDATORY (required) behaviour. Branches MUST exit at the first sequentially-
encountered failure point, for exactly the same reasons for which it is mandatory in programming languages doing
early-exit: to avoid damaging side-effects and to provide deterministic behaviour. Speculative testing of Condition
Register Fields is permitted, as is speculative calculation of CTR, as long as, as usual in any Out-of-Order
microarchitecture, that speculative testing is cancelled should an early-exit occur. i.e. the speculation must be
“precise”: Program Order must be preserved

Also note that when early-exit occurs in Horizontal-first Mode, srcstep, dststep etc. are all reset, ready to begin
looping from the beginning for the next instruction. However for Vertical-first Mode srcstep etc. are incremented
“as usual” i.e. an early-exit has no special impact, regardless of whether the branch occurred or not. This can
leave srcstep etc. in what may be considered an unusual state on exit from a loop and it is up to the programmer
to reset srcstep, dststep etc. to known-good values (easily achieved with setvl).

Additional useful behaviour involves two primary Modes (both of which may be enabled and combined):

• VLSET Mode: identical to Data-Dependent Fail-First Mode for Arithmetic SVP64 operations, with more
flexibility and a close interaction and integration into the underlying base Scalar v3.0B Branch instruction.
Truncation of VL takes place around the early-exit point.

• CTR-test Mode: gives much more flexibility over when and why CTR is decremented, including options
to decrement if a Condition test succeeds or if it fails.

With these side-effects, basic Boolean Logic Analysis advises that it is important to provide a means to enact
them each based on whether testing succeeds or fails. This results in a not-insignificant number of additional
Mode Augmentation bits, accompanying VLSET and CTR-test Modes respectively.

Predicate skipping or zeroing may, as usual with SVP64, be controlled by sz. Where the predicate is masked
out and zeroing is enabled, then in such circumstances the same Boolean Logic Analysis dictates that rather
than testing only against zero, the option to test against one is also prudent. This introduces a new immediate
field, SNZ, which works in conjunction with sz.

Vectorised Branches can be used in either SVP64 Horizontal-First or Vertical-First Mode. Essentially, at an
element level, the behaviour is identical in both Modes, although the ALL bit is meaningless in Vertical-First
Mode.

It is also important to bear in mind that, fundamentally, Vectorised Branch-Conditional is still extremely
close to the Scalar v3.0B Branch-Conditional instructions, and that the same v3.0B Scalar Branch-Conditional

CHAPTER 11. BRANCH MODE 126

instructions are still completely separate and independent, being unaltered and unaffected by their SVP64 variants
in every conceivable way.

Programming note: One important point is that SVP64 instructions are 64 bit. (8 bytes not 4). This needs to
be taken into consideration when computing branch offsets: the offset is relative to the start of the instruction,
which includes the SVP64 Prefix

11.1.3 Format and fields

With element-width overrides being meaningless for Condition Register Fields, bits 4 thru 7 of SVP64 RM may
be used for additional Mode bits.

SVP64 RM MODE (includes repurposing ELWIDTH bits 4:5, and ELWIDTH_SRC bits 6-7 for alternate uses) for Branch
Conditional:

4 5 6 7 17 18 19 20 21 22 23 description
ALL SNZ / / SL SLu 0 0 / LRu sz simple mode
ALL SNZ / VSb SL SLu 0 1 VLI LRu sz VLSET mode
ALL SNZ CTi / SL SLu 1 0 / LRu sz CTR-test mode
ALL SNZ CTi VSb SL SLu 1 1 VLI LRu sz CTR-test+VLSET mode

Brief description of fields:

• sz=1 if predication is enabled and sz=1 and a predicate element bit is zero, SNZ will be substituted in place
of the CR bit selected by BI, as the Condition tested. Contrast this with normal SVP64 sz=1 behaviour,
where only a zero is put in place of masked-out predicate bits.

• sz=0 When sz=0 skipping occurs as usual on masked-out elements, but unlike all other SVP64 behaviour
which entirely skips an element with no related side-effects at all, there are certain special circumstances
where CTR may be decremented. See CTR-test Mode, below.

• ALL when set, all branch conditional tests must pass in order for the branch to succeed. When clear, it
is the first sequentially encountered successful test that causes the branch to succeed. This is identical
behaviour to how programming languages perform early-exit on Boolean Logic chains.

• VLI VLSET is identical to Data-dependent Fail-First mode. In VLSET mode, VL may (depending on VSb)
be truncated. If VLI (Vector Length Inclusive) is clear, VL is truncated to exclude the current element,
otherwise it is included. SVSTATE.MVL is not altered: only VL.

• SL identical to LR except applicable to SVSTATE. If SL is set, SVSTATE is transferred to SVLR
(conditionally on whether SLu is set).

• SLu: SVSTATE Link Update, like LRu except applies to SVSTATE.
• LRu: Link Register Update, used in conjunction with LK=1 to make LR update conditional
• VSb In VLSET Mode, after testing, if VSb is set, VL is truncated if the test succeeds. If VSb is clear, VL

is truncated if a test fails. Masked-out (skipped) bits are not considered part of testing when sz=0
• CTi CTR inversion. CTR-test Mode normally decrements per element tested. CTR inversion decrements

if a test fails. Only relevant in CTR-test Mode.

LRu and CTR-test modes are where SVP64 Branches subtly differ from Scalar v3.0B Branches. sv.bcl for
example will always update LR, whereas sv.bcl/lru will only update LR if the branch succeeds.

Of special interest is that when using ALL Mode (Great Big AND of all Condition Tests), if VL=0, which is
rare but can occur in Data-Dependent Modes, the Branch will always take place because there will be no failing
Condition Tests to prevent it. Likewise when not using ALL Mode (Great Big OR of all Condition Tests) and
VL=0 the Branch is guaranteed not to occur because there will be no successful Condition Tests to make it
happen.

CHAPTER 11. BRANCH MODE 127

11.1.4 Vectorised CR Field numbering, and Scalar behaviour

It is important to keep in mind that just like all SVP64 instructions, the BI field of the base v3.0B Branch
Conditional instruction may be extended by SVP64 EXTRA augmentation, as well as be marked as either Scalar
or Vector. It is also crucially important to keep in mind that for CRs, SVP64 sequentially increments the CR
Field numbers. CR Fields are treated as elements, not bit-numbers of the CR register.

The BI operand of Branch Conditional operations is five bits, in scalar v3.0B this would select one bit of the 32
bit CR, comprising eight CR Fields of 4 bits each. In SVP64 there are 16 32 bit CRs, containing 128 4-bit CR
Fields. Therefore, the 2 LSBs of BI select the bit from the CR Field (EQ LT GT SO), and the top 3 bits are
extended to either scalar or vector and to select CR Fields 0..127 as specified in SVP64 {SVP64 Appendix}.

When the CR Fields selected by SVP64-Augmented BI is marked as scalar, then as the usual SVP64 rules apply:
the Vector loop ends at the first element tested (the first CR Field), after taking predication into consideration.
Thus, also as usual, when a predicate mask is given, and BI marked as scalar, and sz is zero, srcstep skips
forward to the first non-zero predicated element, and only that one element is tested.

In other words, the fact that this is a Branch Operation (instead of an arithmetic one) does not result, ultimately,
in significant changes as to how SVP64 is fundamentally applied, except with respect to:

• the unique properties associated with conditionally changing the Program Counter (aka “a Branch”),
resulting in early-out opportunities

• CTR-testing

Both are outlined below, in later sections.

11.1.5 Horizontal-First and Vertical-First Modes

In SVP64 Horizontal-First Mode, the first failure in ALL mode (Great Big AND) results in early exit: no
more updates to CTR occur (if requested); no branch occurs, and LR is not updated (if requested). Likewise
for non-ALL mode (Great Big Or) on first success early exit also occurs, however this time with the Branch
proceeding. In both cases the testing of the Vector of CRs should be done in linear sequential order (or in REMAP
re-sequenced order): such that tests that are sequentially beyond the exit point are not carried out. (Note:
it is standard practice in Programming languages to exit early from conditional tests, however a little unusual
to consider in an ISA that is designed for Parallel Vector Processing. The reason is to have strictly-defined
guaranteed behaviour)

In Vertical-First Mode, setting the ALL bit results in UNDEFINED behaviour. Given that only one element is being
tested at a time in Vertical-First Mode, a test designed to be done on multiple bits is meaningless.

11.1.6 Description and Modes

Predication in both INT and CR modes may be applied to sv.bc and other SVP64 Branch Conditional operations,
exactly as they may be applied to other SVP64 operations. When sz is zero, any masked-out Branch-element
operations are not included in condition testing, exactly like all other SVP64 operations, including side-effects
such as potentially updating LR or CTR, which will also be skipped. There is one exception here, which is when
BO[2]=0, sz=0, CTR-test=0, CTi=1 and the relevant element predicate mask bit is also zero: under these
special circumstances CTR will also decrement.

When sz is non-zero, this normally requests insertion of a zero in place of the input data, when the relevant
predicate mask bit is zero. This would mean that a zero is inserted in place of CR[BI+32] for testing against BO,
which may not be desirable in all circumstances. Therefore, an extra field is provided SNZ, which, if set, will
insert a one in place of a masked-out element, instead of a zero.

(Note: Both options are provided because it is useful to deliberately cause the Branch-Conditional Vector testing
to fail at a specific point, controlled by the Predicate mask. This is particularly useful in VLSET mode, which will
truncate SVSTATE.VL at the point of the first failed test.)

CHAPTER 11. BRANCH MODE 128

Normally, CTR mode will decrement once per Condition Test, resulting under normal circumstances that
CTR reduces by up to VL in Horizontal-First Mode. Just as when v3.0B Branch-Conditional saves at least
one instruction on tight inner loops through auto-decrementation of CTR, likewise it is also possible to save
instruction count for SVP64 loops in both Vertical-First and Horizontal-First Mode, particularly in circumstances
where there is conditional interaction between the element computation and testing, and the continuation (or
otherwise) of a given loop. The potential combinations of interactions is why CTR testing options have been
added.

Also, the unconditional bit BO[0] is still relevant when Predication is applied to the Branch because in ALL mode
all nonmasked bits have to be tested, and when sz=0 skipping occurs. Even when VLSET mode is not used,
CTR may still be decremented by the total number of nonmasked elements, acting in effect as either a popcount
or cntlz depending on which mode bits are set. In short, Vectorised Branch becomes an extremely powerful tool.

Micro-Architectural Implementation Note: when implemented on top of a Multi-Issue Out-of-Order Engine
it is possible to pass a copy of the predicate and the prerequisite CR Fields to all Branch Units, as well as the
current value of CTR at the time of multi-issue, and for each Branch Unit to compute how many times CTR
would be subtracted, in a fully-deterministic and parallel fashion. A SIMD-based Branch Unit, receiving and
processing multiple CR Fields covered by multiple predicate bits, would do the exact same thing. Obviously,
however, if CTR is modified within any given loop (mtctr) the behaviour of CTR is no longer deterministic.

11.1.6.1 Link Register Update

For a Scalar Branch, unconditional updating of the Link Register LR is useful and practical. However, if a loop
of CR Fields is tested, unconditional updating of LR becomes problematic.

For example when using bclr with LRu=1,LK=0 in Horizontal-First Mode, LR’s value will be unconditionally
overwritten after the first element, such that for execution (testing) of the second element, LR has the value
CIA+8. This is covered in the bclrl example, in a later section.

The addition of a LRu bit modifies behaviour in conjunction with LK, as follows:

• sv.bc When LRu=0,LK=0, Link Register is not updated
• sv.bcl When LRu=0,LK=1, Link Register is updated unconditionally
• sv.bcl/lru When LRu=1,LK=1, Link Register will only be updated if the Branch Condition fails.
• sv.bc/lru When LRu=1,LK=0, Link Register will only be updated if the Branch Condition succeeds.

This avoids destruction of LR during loops (particularly Vertical-First ones).

SVLR and SVSTATE

For precisely the reasons why LK=1 was added originally to the Power ISA, with SVSTATE being a peer of the
Program Counter it becomes necessary to also add an SVLR (SVSTATE Link Register) and corresponding
control bits SL and SLu.

11.1.6.2 CTR-test

Where a standard Scalar v3.0B branch unconditionally decrements CTR when BO[2] is clear, CTR-test Mode
introduces more flexibility which allows CTR to be used for many more types of Vector loops constructs.

CTR-test mode and CTi interaction is as follows: note that BO[2] is still required to be clear for CTR decrements
to be considered, exactly as is the case in Scalar Power ISA v3.0B

• CTR-test=0, CTi=0: CTR decrements on a per-element basis if BO[2] is zero. Masked-out elements
when sz=0 are skipped (i.e. CTR is not decremented when the predicate bit is zero and sz=0).

• CTR-test=0, CTi=1: CTR decrements on a per-element basis if BO[2] is zero and a masked-out element
is skipped (sz=0 and predicate bit is zero). This one special case is the opposite of other combinations,
as well as being completely different from normal SVP64 sz=0 behaviour)

• CTR-test=1, CTi=0: CTR decrements on a per-element basis if BO[2] is zero and the Condition Test
succeeds. Masked-out elements when sz=0 are skipped (including not decrementing CTR)

CHAPTER 11. BRANCH MODE 129

• CTR-test=1, CTi=1: CTR decrements on a per-element basis if BO[2] is zero and the Condition Test
fails. Masked-out elements when sz=0 are skipped (including not decrementing CTR)

CTR-test=0, CTi=1, sz=0 requires special emphasis because it is the only time in the entirety of SVP64 that
has side-effects when a predicate mask bit is clear. All other SVP64 operations entirely skip an element when
sz=0 and a predicate mask bit is zero. It is also critical to emphasise that in this unusual mode, no other
side-effects occur: only CTR is decremented, i.e. the rest of the Branch operation is skipped.

11.1.6.3 VLSET Mode

VLSET Mode truncates the Vector Length so that subsequent instructions operate on a reduced Vector Length.
This is similar to Data-dependent Fail-First and LD/ST Fail-First, where for VLSET the truncation occurs at
the Branch decision-point.

Interestingly, due to the side-effects of VLSET mode it is actually useful to use Branch Conditional even to
perform no actual branch operation, i.e to point to the instruction after the branch. Truncation of VL would
thus conditionally occur yet control flow alteration would not.

VLSET mode with Vertical-First is particularly unusual. Vertical-First is designed to be used for explicit looping,
where an explicit call to svstep is required to move both srcstep and dststep on to the next element, until
VL (or other condition) is reached. Vertical-First Looping is expected (required) to terminate if the end of
the Vector, VL, is reached. If however that loop is terminated early because VL is truncated, VLSET with
Vertical-First becomes meaningless. Resolving this would require two branches: one Conditional, the other
branching unconditionally to create the loop, where the Conditional one jumps over it.

Therefore, with VSb, the option to decide whether truncation should occur if the branch succeeds or if the
branch condition fails allows for the flexibility required. This allows a Vertical-First Branch to either be used as
a branch-back (loop) or as part of a conditional exit or function call from inside a loop, and for VLSET to be
integrated into both types of decision-making.

In the case of a Vertical-First branch-back (loop), with VSb=0 the branch takes place if success conditions are
met, but on exit from that loop (branch condition fails), VL will be truncated. This is extremely useful.

VLSET mode with Horizontal-First when VSb=0 is still useful, because it can be used to truncate VL to the first
predicated (non-masked-out) element.

The truncation point for VL, when VLi is clear, must not include skipped elements that preceded the current
element being tested. Example: sz=0, VLi=0, predicate mask = 0b110010 and the Condition Register failure
point is at CR Field element 4.

• Testing at element 0 is skipped because its predicate bit is zero
• Testing at element 1 passed
• Testing elements 2 and 3 are skipped because their respective predicate mask bits are zero
• Testing element 4 fails therefore VL is truncated to 2 not 4 due to elements 2 and 3 being skipped.

If sz=1 in the above example then VL would have been set to 4 because in non-zeroing mode the zero’d elements
are still effectively part of the Vector (with their respective elements set to SNZ)

If VLI=1 then VL would be set to 5 regardless of sz, due to being inclusive of the element actually being tested.

11.1.6.4 VLSET and CTR-test combined

If both CTR-test and VLSET Modes are requested, it is important to observe the correct order. What occurs
depends on whether VLi is enabled, because VLi affects the length, VL.

If VLi (VL truncate inclusive) is set:

1. compute the test including whether CTR triggers
2. (optionally) decrement CTR
3. (optionally) truncate VL (VSb inverts the decision)

CHAPTER 11. BRANCH MODE 130

4. decide (based on step 1) whether to terminate looping (including not executing step 5)
5. decide whether to branch.

If VLi is clear, then when a test fails that element and any following it should not be considered part of the
Vector. Consequently:

1. compute the branch test including whether CTR triggers
2. if the test fails against VSb, truncate VL to the previous element, and terminate looping. No further steps

executed.
3. (optionally) decrement CTR
4. decide whether to branch.

11.1.7 Boolean Logic combinations

In a Scalar ISA, Branch-Conditional testing even of vector results may be performed through inversion of tests.
NOR of all tests may be performed by inversion of the scalar condition and branching out from the scalar loop
around elements, using scalar operations.

In a parallel (Vector) ISA it is the ISA itself which must perform the prerequisite logic manipulation. Thus for
SVP64 there are an extraordinary number of nesessary combinations which provide completely different and
useful behaviour. Available options to combine:

• BO[0] to make an unconditional branch would seem irrelevant if it were not for predication and for
side-effects (CTR Mode for example)

• Enabling CTR-test Mode and setting BO[2] can still result in the Branch taking place, not because the
Condition Test itself failed, but because CTR reached zero because, as required by CTR-test mode, CTR
was decremented as a result of Condition Tests failing.

• BO[1] to select whether the CR bit being tested is zero or nonzero
• R30 and ~R30 and other predicate mask options including CR and inverted CR bit testing
• sz and SNZ to insert either zeros or ones in place of masked-out predicate bits
• ALL or ANY behaviour corresponding to AND of all tests and OR of all tests, respectively.
• Predicate Mask bits, which combine in effect with the CR being tested.
• Inversion of Predicate Masks (~r3 instead of r3, or using NE rather than EQ) which results in an additional

level of possible ANDing, ORing etc. that would otherwise need explicit instructions.

The most obviously useful combinations here are to set BO[1] to zero in order to turn ALL into Great-Big-NAND
and ANY into Great-Big-NOR. Other Mode bits which perform behavioural inversion then have to work round
the fact that the Condition Testing is NOR or NAND. The alternative to not having additional behavioural
inversion (SNZ, VSb, CTi) would be to have a second (unconditional) branch directly after the first, which the
first branch jumps over. This contrivance is avoided by the behavioural inversion bits.

11.1.8 Pseudocode and examples

Please see {SVP64 Appendix} regarding CR bit ordering and for the definition of CR{n}

For comparative purposes this is a copy of the v3.0B bc pseudocode

if (mode_is_64bit) then M <- 0
else M <- 32
if ¬BO[2] then CTR <- CTR - 1
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then
if AA then NIA <-iea EXTS(BD || 0b00)
else NIA <-iea CIA + EXTS(BD || 0b00)

if LK then LR <-iea CIA + 4

CHAPTER 11. BRANCH MODE 131

Simplified pseudocode including LRu and CTR skipping, which illustrates clearly that SVP64 Scalar Branches
(VL=1) are not identical to v3.0B Scalar Branches. The key areas where differences occur are the inclusion of
predication (which can still be used when VL=1), in when and why CTR is decremented (CTRtest Mode) and
whether LR is updated (which is unconditional in v3.0B when LK=1, and conditional in SVP64 when LRu=1).

Inline comments highlight the fact that the Scalar Branch behaviour and pseudocode is still clearly visible and
embedded within the Vectorised variant:

if (mode_is_64bit) then M <- 0
else M <- 32
the bit of CR to test, if the predicate bit is zero,
is overridden
testbit = CR[BI+32]
if ¬predicate_bit then testbit = SVRMmode.SNZ
otherwise apart from the override ctr_ok and cond_ok
are exactly the same
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(testbit ^ BO[1])
if ¬predicate_bit & ¬SVRMmode.sz then
this is entirely new: CTR-test mode still decrements CTR
even when predicate-bits are zero
if ¬BO[2] & CTRtest & ¬CTi then
CTR = CTR - 1

instruction finishes here
else
usual BO[2] CTR-mode now under CTR-test mode as well
if ¬BO[2] & ¬(CTRtest & (cond_ok ^ CTi)) then CTR <- CTR - 1
new VLset mode, conditional test truncates VL
if VLSET and VSb = (cond_ok & ctr_ok) then

if SVRMmode.VLI then SVSTATE.VL = srcstep+1
else SVSTATE.VL = srcstep

usual LR is now conditional, but also joined by SVLR
lr_ok <- LK
svlr_ok <- SVRMmode.SL
if ctr_ok & cond_ok then
if AA then NIA <-iea EXTS(BD || 0b00)
else NIA <-iea CIA + EXTS(BD || 0b00)
if SVRMmode.LRu then lr_ok <- ¬lr_ok
if SVRMmode.SLu then svlr_ok <- ¬svlr_ok

if lr_ok then LR <-iea CIA + 4
if svlr_ok then SVLR <- SVSTATE

Below is the pseudocode for SVP64 Branches, which is a little less obvious but identical to the above. The lack
of obviousness is down to the early-exit opportunities.

Effective pseudocode for Horizontal-First Mode:

if (mode_is_64bit) then M <- 0
else M <- 32
cond_ok = not SVRMmode.ALL
for srcstep in range(VL):

select predicate bit or zero/one
if predicate[srcstep]:

get SVP64 extended CR field 0..127
SVCRf = SVP64EXTRA(BI>>2)
CRbits = CR{SVCRf}
testbit = CRbits[BI & 0b11]
testbit = CR[BI+32+srcstep*4]

CHAPTER 11. BRANCH MODE 132

else if not SVRMmode.sz:
inverted CTR test skip mode
if ¬BO[2] & CTRtest & ¬CTI then

CTR = CTR - 1
continue # skip to next element

else
testbit = SVRMmode.SNZ

actual element test here
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
el_cond_ok <- BO[0] | ¬(testbit ^ BO[1])
check if CTR dec should occur
ctrdec = ¬BO[2]
if CTRtest & (el_cond_ok ^ CTi) then

ctrdec = 0b0
if ctrdec then CTR <- CTR - 1
merge in the test
if SVRMmode.ALL:

cond_ok &= (el_cond_ok & ctr_ok)
else

cond_ok |= (el_cond_ok & ctr_ok)
test for VL to be set (and exit)
if VLSET and VSb = (el_cond_ok & ctr_ok) then

if SVRMmode.VLI then SVSTATE.VL = srcstep+1
else SVSTATE.VL = srcstep
break

early exit?
if SVRMmode.ALL != (el_cond_ok & ctr_ok):

break
SVP64 rules about Scalar registers still apply!
if SVCRf.scalar:

break
loop finally done, now test if branch (and update LR)
lr_ok <- LK
svlr_ok <- SVRMmode.SL
if cond_ok then

if AA then NIA <-iea EXTS(BD || 0b00)
else NIA <-iea CIA + EXTS(BD || 0b00)
if SVRMmode.LRu then lr_ok <- ¬lr_ok
if SVRMmode.SLu then svlr_ok <- ¬svlr_ok

if lr_ok then LR <-iea CIA + 4
if svlr_ok then SVLR <- SVSTATE

Pseudocode for Vertical-First Mode:

get SVP64 extended CR field 0..127
SVCRf = SVP64EXTRA(BI>>2)
CRbits = CR{SVCRf}
select predicate bit or zero/one
if predicate[srcstep]:

if BRc = 1 then # CR0 vectorised
CR{SVCRf+srcstep} = CRbits

testbit = CRbits[BI & 0b11]
else if not SVRMmode.sz:

inverted CTR test skip mode
if ¬BO[2] & CTRtest & ¬CTI then

CTR = CTR - 1

CHAPTER 11. BRANCH MODE 133

SVSTATE.srcstep = new_srcstep
exit # no branch testing

else
testbit = SVRMmode.SNZ

actual element test here
cond_ok <- BO[0] | ¬(testbit ^ BO[1])
test for VL to be set (and exit)
if VLSET and cond_ok = VSb then

if SVRMmode.VLI
SVSTATE.VL = new_srcstep+1

else
SVSTATE.VL = new_srcstep

11.1.8.1 Example Shader code

// assume f() g() or h() modify a and/or b
while(a > 2) {

if(b < 5)
f();

else
g();

h();
}

which compiles to something like:

vec<i32> a, b;
// ...
pred loop_pred = a > 2;
// loop continues while any of a elements greater than 2
while(loop_pred.any()) {

// vector of predicate bits
pred if_pred = loop_pred & (b < 5);
// only call f() if at least 1 bit set
if(if_pred.any()) {

f(if_pred);
}

label1:
// loop mask ANDs with inverted if-test
pred else_pred = loop_pred & ~if_pred;
// only call g() if at least 1 bit set
if(else_pred.any()) {

g(else_pred);
}
h(loop_pred);

}

which will end up as:

start from while loop test point
b looptest

while_loop:
sv.cmpi CR80.v, b.v, 5 # vector compare b into CR64 Vector
sv.bc/m=r30/~ALL/sz CR80.v.LT skip_f # skip when none
only calculate loop_pred & pred_b because needed in f()
sv.crand CR80.v.SO, CR60.v.GT, CR80.V.LT # if = loop & pred_b

CHAPTER 11. BRANCH MODE 134

f(CR80.v.SO)
skip_f:

illustrate inversion of pred_b. invert r30, test ALL
rather than SOME, but masked-out zero test would FAIL,
therefore masked-out instead is tested against 1 not 0
sv.bc/m=~r30/ALL/SNZ CR80.v.LT skip_g
else = loop & ~pred_b, need this because used in g()
sv.crternari(A&~B) CR80.v.SO, CR60.v.GT, CR80.V.LT
g(CR80.v.SO)

skip_g:
conditionally call h(r30) if any loop pred set
sv.bclr/m=r30/~ALL/sz BO[1]=1 h()

looptest:
sv.cmpi CR60.v a.v, 2 # vector compare a into CR60 vector
sv.crweird r30, CR60.GT # transfer GT vector to r30
sv.bc/m=r30/~ALL/sz BO[1]=1 while_loop

end:

11.1.8.2 LRu example

show why LRu would be useful in a loop. Imagine the following c code:

for (int i = 0; i < 8; i++) {
if (x < y) break;

}

Under these circumstances exiting from the loop is not only based on CTR it has become conditional on a CR
result. Thus it is desirable that NIA and LR only be modified if the conditions are met

v3.0 pseudocode for bclrl:

if (mode_is_64bit) then M <- 0
else M <- 32
if ¬BO[2] then CTR <- CTR - 1
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then NIA <-iea LR[0:61] || 0b00
if LK then LR <-iea CIA + 4

the latter part for SVP64 bclrl becomes:

for i in 0 to VL-1:
...
...
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
lr_ok <- LK
if ctr_ok & cond_ok then

NIA <-iea LR[0:61] || 0b00
if SVRMmode.LRu then lr_ok <- ¬lr_ok

if lr_ok then LR <-iea CIA + 4
if NIA modified exit loop

The reason why should be clear from this being a Vector loop: unconditional destruction of LR when LK=1
makes sv.bclrl ineffective, because the intention going into the loop is that the branch should be to the copy of
LR set at the start of the loop, not half way through it. However if the change to LR only occurs if the branch is
taken then it becomes a useful instruction.

The following pseudocode should not be implemented because it violates the fundamental principle of SVP64

CHAPTER 11. BRANCH MODE 135

which is that SVP64 looping is a thin wrapper around Scalar Instructions. The pseducode below is more an
actual Vector ISA Branch and as such is not at all appropriate:

for i in 0 to VL-1:
...
...
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then NIA <-iea LR[0:61] || 0b00

only at the end of looping is LK checked.
this completely violates the design principle of SVP64
and would actually need to be a separate (scalar)
instruction "set LR to CIA+4 but retrospectively"
which is clearly impossible
if LK then LR <-iea CIA + 4

CHAPTER 11. BRANCH MODE 136

[[!tag standards]]

Chapter 12

setvl instruction

12.1 setvl: Set Vector Length

See links:

• http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-November/001366.html
• https://bugs.libre-soc.org/show_bug.cgi?id=535
• https://bugs.libre-soc.org/show_bug.cgi?id=587
• https://bugs.libre-soc.org/show_bug.cgi?id=568 TODO
• https://bugs.libre-soc.org/show_bug.cgi?id=927 bug - RT>=32
• https://bugs.libre-soc.org/show_bug.cgi?id=862 VF Predication
• https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vsetvlivsetvl-instructions
• {svstep instruction}
• pseudocode {Simple-V pseudocode}

Add the following section to the Simple-V Chapter

12.1.1 setvl

SVL-Form

0-5 6-10 11-15 16-22 23 24 25 26-30 31 FORM
PO RT RA SVi ms vs vf XO Rc SVL-Form

• setvl RT,RA,SVi,vf,vs,ms (Rc=0)
• setvl. RT,RA,SVi,vf,vs,ms (Rc=1)

Pseudo-code:

overflow <- 0b0 # sets CR.SO if set and if Rc=1
VLimm <- SVi + 1
set or get MVL
if ms = 1 then MVL <- VLimm[0:6]
else MVL <- SVSTATE[0:6]
set or get VL
if vs = 0 then VL <- SVSTATE[7:13]
else if _RA != 0 then

if (RA) >u 0b1111111 then
VL <- 0b1111111
overflow <- 0b1

137

http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-November/001366.html
https://bugs.libre-soc.org/show_bug.cgi?id=535
https://bugs.libre-soc.org/show_bug.cgi?id=587
https://bugs.libre-soc.org/show_bug.cgi?id=568
https://bugs.libre-soc.org/show_bug.cgi?id=927
https://bugs.libre-soc.org/show_bug.cgi?id=862
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vsetvlivsetvl-instructions

CHAPTER 12. SETVL INSTRUCTION 138

else VL <- (RA)[57:63]
else if _RT = 0 then VL <- VLimm[0:6]
else if CTR >u 0b1111111 then

VL <- 0b1111111
overflow <- 0b1

else VL <- CTR[57:63]
limit VL to within MVL
if VL >u MVL then

overflow <- 0b1
VL <- MVL

SVSTATE[0:6] <- MVL
SVSTATE[7:13] <- VL
if _RT != 0 then

GPR(_RT) <- [0]*57 || VL
MAXVL is a static "state-reset" opportunity so VF is only set then.
if ms = 1 then

SVSTATE[63] <- vf # set Vertical-First mode
SVSTATE[62] <- 0b0 # clear persist bit

Special Registers Altered:

CR0 (if Rc=1)
SVSTATE

• SVi - bits 16-22 - an immediate operand for setting MVL and/or VL
• ms - bit 23 - allows for setting of MVL
• vs - bit 24 - allows for setting of VL
• vf - bit 25 - sets “Vertical First Mode”.

Note that in immediate setting mode VL and MVL start from one but that this is compensated for in the
assembly notation. i.e. that an immediate value of 1 in assembler notation actually places the value 0b0000000
in the SVi field bits: on execution the setvl instruction adds one to the decoded SVi field bits, resulting in
VL/MVL being set to 1. In future this will allow VL to be set to values ranging from 1 to 128 with only 7 bits
instead of 8. Setting VL/MVL to 0 would result in all Vector operations becoming nop. If this is truly desired
(nop behaviour) then setting VL and MVL to zero is to be done via the [[SVSTATE SPR|sv/sprs]].

Note that setmvli is a pseudo-op, based on RA/RT=0, and setvli likewise

setvli VL=8 : setvl r0, r0, VL=8, vf=0, vs=1, ms=0
setvli. VL=8 : setvl. r0, r0, VL=8, vf=0, vs=1, ms=0
setmvli MVL=8 : setvl r0, r0, MVL=8, vf=0, vs=0, ms=1
setmvli. MVL=8 : setvl. r0, r0, MVL=8, vf=0, vs=0, ms=1

Additional pseudo-op for obtaining VL without modifying it (or any state):

getvl r5 : setvl r5, r0, vf=0, vs=0, ms=0
getvl. r5 : setvl. r5, r0, vf=0, vs=0, ms=0

Note that whilst it is possible to set both MVL and VL from the same immediate, it is not possible to set them
to different immediates in the same instruction. Doing so would require two instructions.

Use of setvl results in changes to the SVSTATE SPR. see {SPRs}

Selecting sources for VL

There is considerable opcode pressure, consequently to set MVL and VL from different sources is as follows:

condition effect
vs=1, RA=0, RT!=0 VL,RT set to MIN(MVL, CTR)
vs=1, RA=0, RT=0 VL set to MIN(MVL, SVi+1)
vs=1, RA!=0, RT=0 VL set to MIN(MVL, RA)

CHAPTER 12. SETVL INSTRUCTION 139

condition effect
vs=1, RA!=0, RT!=0 VL,RT set to MIN(MVL, RA)

The reasoning here is that the opportunity to set RT equal to the immediate SVi+1 is sacrificed in favour of
setting from CTR.

Unusual Rc=1 behaviour

Normally, the return result from an instruction is in RT. With it being possible for RT=0 to mean that CTR mode
is to be read, some different semantics are needed.

CR Field 0, when Rc=1, may be set even if RT=0. The reason is that overflow may occur: VL, if set either from
an immediate or from CTR, may not exceed MAXVL, and if it is, CR0.SO must be set.

In reality it is VL being set. Therefore, rather than CR0 testing RT when Rc=1, CR0.EQ is set if VL=0, CR0.GE is
set if VL is non-zero.

SUBVL

Sub-vector elements are not be considered “Vertical”. The vec2/3/4 is to be considered as if the “single element”.
Caveats exist for {Swizzle Move} and {Pack / Unpack} when Pack/Unpack is enabled, due to the order in which
VL and SUBVL loops are applied being swapped (outer-inner becomes inner-outer)

12.1.2 Examples

12.1.2.1 Core concept loop

This example illustrates the Cray-style Loop concept. However where most Cray Vectors have a Max Vector
Length hard-coded into the architecture, Simple-V allows MVL to be set, but only as a static immediate, so that
compilers may embed the register resource allocation statically at compile-time.

loop:
setvl a3, a0, MVL=8 # update a3 with vl

(# of elements this iteration)
set MVL to 8 and
set a3=VL=MIN(a0,MVL)

do vector operations at up to 8 length (MVL=8)
...
sub. a0, a0, a3 # Decrement count by vl, set CR0.eq
bnez a0, loop # Any more?

12.1.2.2 Loop using Rc=1

In this example, the setvl. instruction enabled Rc=1, which sets CR0.eq when VL becomes zero.

my_fn:
li r3, 1000
b test

loop:
sub r3, r3, r4
...

test:
setvli. r4, r3, MVL=64
bne cr0, loop

end:
blr

CHAPTER 12. SETVL INSTRUCTION 140

12.1.2.3 Load/Store-Multi (selective)

Up to 64 FPRs will be loaded, here. r3 is set one per bit for each FP register required to be loaded. The block of
memory from which the registers are loaded is contiguous (no gaps): any FP register which has a corresponding
zero bit in r3 is unaltered. In essence this is a selective LD-multi with “Scatter” capability.

setvli r0, MVL=64, VL=64
sv.fld/dm=r3 *r0, 0(r30) # selective load 64 FP registers

Up to 64 FPRs will be saved, here. Again, r3 specifies which registers are set in a VEXPAND fashion.

setvli r0, MVL=64, VL=64
sv.stfd/sm=r3 *fp0, 0(r30) # selective store 64 FP registers

[[!tag standards]]

Chapter 13

svstep instruction

13.1 svstep: Vertical-First Stepping and status reporting

SVL-Form

• svstep RT,SVi,vf (Rc=0)
• svstep. RT,SVi,vf (Rc=1)

0-5 6-10 11.15 16..22 23-25 26-30 31 Form
PO RT / SVi / / vf XO Rc SVL-Form

Pseudo-code:

if SVi[3:4] = 0b11 then
store pack and unpack in SVSTATE
SVSTATE[53] <- SVi[5]
SVSTATE[54] <- SVi[6]
RT <- [0]*62 || SVSTATE[53:54]

else
Vertical-First explicit stepping.
step <- SVSTATE_NEXT(SVi, vf)
RT <- [0]*57 || step

Special Registers Altered:

CR0 (if Rc=1)

Description

svstep may be used to enquire about the REMAP Schedule and it may be used to alter Vectorisation State.
When vf=1 then stepping occurs. When vf=0 the enquiry is performed without altering internal state. If SVi=0,
Rc=0, vf=0 the instruction is a nop.

The following Modes exist:

• SVi=0: appropriately step srcstep, dststep, subsrcstep and subdststep to the next element, taking pack
and unpack into consideration.

• When SVi is 1-4 the REMAP Schedule for a given SVSHAPE may be returned in RT. SVi=1 selects
SVSHAPE0 current state, through to SVi=4 selects SVSHAPE3.

• When SVi is 5, SVSTATE.srcstep is returned.
• When SVi is 6, SVSTATE.dststep is returned.
• When SVi is 7, SVSTATE.ssubstep is returned.

141

CHAPTER 13. SVSTEP INSTRUCTION 142

• When SVi is 8, SVSTATE.dsubstep is returned.
• When SVi is 0b1100 pack/unpack in SVSTATE is cleared
• When SVi is 0b1101 pack in SVSTATE is set, unpack is cleared
• When SVi is 0b1110 unpack in SVSTATE is set, pack is cleared
• When SVi is 0b1111 pack/unpack in SVSTATE are set

As this is a Single-Predicated (1P) instruction, predication may be applied to skip (or zero) elements.

• Vertical-First Mode will return the requested index (and move to the next state if vf=1)
• Horizontal-First Mode can be used to return all indices, i.e. walks through all possible states.

Vectorisation of svstep itself

As a 32-bit instruction, svstep may be itself be Vector-Prefixed, as sv.svstep. This will work perfectly well in
Horizontal-First as it will in Vertical-First Mode although there are caveats for the Deterministic use of looping
with Sub-Vectors in Vertical-First mode.

Example: to obtain the full set of possible computed element indices use sv.svstep *RT,SVi,1 which will
store all computed element indices, starting from RT. If Rc=1 then a co-result Vector of CR Fields will also be
returned, comprising the “loop end-points” of each of the inner loops when either Matrix Mode or DCT/FFT is
set. In other words, for example, when the xdim inner loop reaches the end and on the next iteration it will begin
again at zero, the CR Field EQ will be set. With a maximum of three loops within both Matrix and DCT/FFT
Modes, the CR Field’s EQ bit will be set at the end of the first inner loop, the LE bit for the second, the GT bit
for the outermost loop and the SO bit set on the very last element, when all loops reach their maximum extent.

Programmer’s note: VL in some situations, particularly larger Matrices (5x7x3 will set MAXVL=105), will
cause sv.svstep to return a considerable number of values. Under such circumstances sv.svstep/ew=8 is
recommended.

Programmer’s note: having conveniently obtained a pre-computed Schedule with sv.svstep, it may then be used
as the input to Indexed REMAP Mode to achieve the exact same Schedule. It is evident however that before
use some of the Indices may be arbitrarily altered as desired. sv.svstep helps the programmer avoid having to
manually recreate Indices for certain types of common Loop patterns. In its simplest form, without REMAP
(SVi=5 or SVi=6), is equivalent to the iota instruction found in other Vector ISAs

Vertical First Mode

Vertical First is effectively like an implicit single bit predicate applied to every SVP64 instruction. ONLY one
element in each SVP64 Vector instruction is executed; srcstep and dststep do not increment automatically on
completion of one instruction, and the Program Counter progresses immediately to the next instruction just
as it would for any standard scalar v3.0B instruction.

A mode of srcstep (SVi=0) is called which can move srcstep and dststep on to the next element, still respecting
predicate masks.

In other words, where normal SVP64 Vectorisation acts “horizontally” by looping first through 0 to VL-1 and only
then moving the PC to the next instruction, Vertical-First moves the PC onwards (vertically) through multiple
instructions with the same srcstep and dststep, then an explict instruction used to advance srcstep/dststep.
An outer loop is expected to be used (branch instruction) which completes a series of Vector operations.

Testing any end condition of any loop of any REMAP state allows branches to be used to create loops.

Programmer’s note: when Predicate Non-Zeroing is used this indicates to the underlying hardware that any
masked-out element must be skipped. This includes in Vertical-First Mode, and programmers should be keenly
aware that srcstep or dststep or both may* jump by more than one as a result, because the actual request under
these circumstances was to execute on the first available next non-masked-out element. It should be evident
that it is the sv.svstep instruction that must be Predicated in order for the entire loop to use the Predicate
correctly, and it is strongly recommended for all instructions within the same Vertical-First Loop to utilise the
exact same Predicate Mask(s).*

Programmers should be aware that VL, srcstep and dststep and the SUBVL substeps are global in nature.
Nested looping with different schedules is perfectly possible, as is calling of functions, however SVSTATE (and

CHAPTER 13. SVSTEP INSTRUCTION 143

any associated SVSHAPEs if REMAP is being used) should obviously be stored on the stack in order to achieve
this benefit not normally found in Vector ISAs.

Use of svstep with Vertical-First sub-vectors

Incrementing and iteration through subvector state ssubstep and dsubstep is possible with sv.svstep/vecN where
as expected N may be 2/3/4. However it is necessary to use the exact same Sub-Vector qualifier on any Prefixed
instructions, within any given Vertical-First loop: vec2/3/4 is not automatically applied to all instructions, it
must be explicitly applied on a per-instruction basis. Also valid is not specifying a Sub-vector qualifier at all,
but it is critically important to note that operations will be repeated. For example if sv.svstep/vec2 is not
used on sv.addi then each Vector element operation is repeated twice. The reason is that whilst svstep will
be iterating through both the SUBVL and VL loops, the addi instruction only uses srcstep and dststep (not
ssubstep or dsubstep) Illustrated below:

def offset():
for step in range(VL):
for substep in range(SUBVL=2):
yield step, substep

for i, j in offset():
vec2_offs = i * SUBVL + j # calculate vec2 offset
addi RT+i, RA+i, 1 # but sv.addi is not vec2!
muli/vec2 RT+vec2_offs, RA+vec2_offs, 2 # this is

Actual assembler would be:

loop:
setvl VF=1, CTRmode
sv.addi *RT, *RA, 1 # no vec2
sv.muli/vec2 *RT, *RA, 2 # vec2
sv.svstep/vec2 # must match the muli
sv.bc CTRmode, loop # subtracts VL from CTR

This illustrates the correct but seemingly-anomalous behaviour: sv.svstep/vec2 is being requested to update
SVSTATE to follow a vec2 loop construct. The anomalous sv.addi is not prohibited as it may in fact be desirable
to execute operations twice, or to re-load data that was overwritten, and many other possibilities.

CHAPTER 13. SVSTEP INSTRUCTION 144

13.2 Appendix

src_iterate

Note that srcstep and ssubstep are not the absolute final Element (and Sub-Element) offsets. srcstep still has
to go through individual REMAP translation before becoming a per-operand (RA, RB, RC, RT, RS) Element-level
Source offset.

Note also critically that PACK mode simply inverts the outer/order loops making SUBVL the outer loop and VL
the inner.

source-stepping iterator
subvl = SVSTATE.subvl
vl = SVSTATE.vl
pack = SVSTATE.pack
unpack = SVSTATE.unpack
ssubstep = SVSTATE.ssubstep
end_ssub = ssubstep == subvl
end_src = SVSTATE.srcstep == vl-1
first source step.
srcstep = SVSTATE.srcstep
used below:
sz - from RM.MODE, source-zeroing
srcmask - from RM.MODE, the source predicate
if pack:

pack advances subvl in *outer* loop
while True:

assert srcstep <= vl-1
end_src = srcstep == vl-1
if end_src:

if end_ssub:
loopend = True

else:
SVSTATE.ssubstep += 1

srcstep = 0 # reset
break

else:
srcstep += 1 # advance srcstep
if not sz:

break
if ((1 << srcstep) & srcmask) != 0:

break
else:

advance subvl in *inner* loop
if end_ssub:

while True:
assert srcstep <= vl-1
end_src = srcstep == vl-1
if end_src: # end-point

loopend = True
srcstep = 0
break

else:
srcstep += 1

if not sz:
break

CHAPTER 13. SVSTEP INSTRUCTION 145

if ((1 << srcstep) & srcmask) != 0:
break

else:
log(" sskip", bin(srcmask), bin(1 << srcstep))

SVSTATE.ssubstep = 0b00 # reset
else:

advance ssubstep
SVSTATE.ssubstep += 1

SVSTATE.srcstep = srcstep

CHAPTER 13. SVSTEP INSTRUCTION 146

dest_iterate

Note that dststep and dsubstep are not the absolute final Element (and Sub-Element) offsets. dststep
still has to go through individual REMAP translation before becoming a per-operand (RT, RS/EA) destination
Element-level offset, and dsubstep may also go through (f)mv.swizzle reordering.

Note also critically that UNPACK mode simply inverts the outer/order loops making SUBVL the outer loop and
VL the inner.

dest step iterator
vl = SVSTATE.vl
subvl = SVSTATE.subvl
unpack = SVSTATE.unpack
dsubstep = SVSTATE.dsubstep
end_dsub = dsubstep == subvl
dststep = SVSTATE.dststep
end_dst = dststep == vl-1
used below:
dz - from RM.MODE, destination-zeroing
dstmask - from RM.MODE, the destination predicate
if unpack:

unpack advances subvl in *outer* loop
while True:

assert dststep <= vl-1
end_dst = dststep == vl-1
if end_dst:

if end_dsub:
loopend = True

else:
SVSTATE.dsubstep += 1

dststep = 0 # reset
break

else:
dststep += 1 # advance dststep
if not dz:

break
if ((1 << dststep) & dstmask) != 0:

break
else:

advance subvl in *inner* loop
if end_dsub:

while True:
assert dststep <= vl-1
end_dst = dststep == vl-1
if end_dst: # end-point

loopend = True
dststep = 0
break

else:
dststep += 1

if not dz:
break

if ((1 << dststep) & dstmask) != 0:
break

SVSTATE.dsubstep = 0b00 # reset
else:

advance ssubstep

CHAPTER 13. SVSTEP INSTRUCTION 147

SVSTATE.dsubstep += 1

SVSTATE.dststep = dststep

CHAPTER 13. SVSTEP INSTRUCTION 148

SVSTATE_NEXT

if SVi = 1 then return REMAP SVSHAPE0 current offset
if SVi = 2 then return REMAP SVSHAPE1 current offset
if SVi = 3 then return REMAP SVSHAPE2 current offset
if SVi = 4 then return REMAP SVSHAPE3 current offset
if SVi = 5 then return SVSTATE.srcstep # VL source step
if SVi = 6 then return SVSTATE.dststep # VL dest step
if SVi = 7 then return SVSTATE.ssubstep # SUBVL source step
if SVi = 8 then return SVSTATE.dsubstep # SUBVL dest step

SVi=0, explicit iteration requezted
src_iterate();
dst_iterate();
return 0

at_loopend

Both Vertical-First and Horizontal-First may use this algorithm to determine if the “end-of-looping” (end of
Sub-Program-Counter) has been reached. Horizontal-First Mode will immediately move to the next instruction,
where svstep. will set CR0.EQ to 1.

tells if this is the last possible element.
subvl = SVSTATE.subvl
vl = SVSTATE.vl
end_ssub = SVSTATE.ssubstep == subvl
end_dsub = SVSTATE.dsubstep == subvl
if SVSTATE.srcstep == vl-1 and end_ssub:

return True
if SVSTATE.dststep == vl-1 and end_dsub:

return True
return False

[[!tag standards]]

Chapter 14

REMAP subsystem

14.1 REMAP

REMAP is an advanced form of Vector “Structure Packing” that provides hardware-level support for commonly-
used nested loop patterns that would otherwise require full inline loop unrolling. For more general reordering an
Indexed REMAP mode is available (a RISC-paradigm abstracted analog to xxperm).

REMAP allows the usual sequential vector loop 0..VL-1 to be “reshaped” (re-mapped) from a linear form
to a 2D or 3D transposed form, or “offset” to permit arbitrary access to elements (when elwidth overrides
are used), independently on each Vector src or dest register. Aside from Indexed REMAP this is entirely
Hardware-accelerated reordering and consequently not costly in terms of register access. It will however place a
burden on Multi-Issue systems but no more than if the equivalent Scalar instructions were explicitly loop-unrolled
without SVP64, and some advanced implementations may even find the Deterministic nature of the Scheduling
to be easier on resources.

The initial primary motivation of REMAP was for Matrix Multiplication, reordering of sequential data in-place:
in-place DCT and FFT were easily justified given the exceptionally high usage in Computer Science. Four SPRs
are provided which may be applied to any GPR, FPR or CR Field so that for example a single FMAC may be
used in a single hardware-controlled 100% Deterministic loop to perform 5x3 times 3x4 Matrix multiplication,
generating 60 FMACs without needing explicit assembler unrolling. Additional uses include regular “Structure
Packing” such as RGB pixel data extraction and reforming (although less costly vec2/3/4 reshaping is achievable
with PACK/UNPACK).

Even once designed as an independent RISC-paradigm abstraction system it was realised that Matrix REMAP
could be applied to min/max instructions to achieve Floyd-Warshall Graph computations, or to AND/OR
Ternary bitmanipulation to compute Warshall Transitive Closure, or to perform Cryptographic Matrix operations
with Galois Field variants of Multiply-Accumulate and many more uses expected to be discovered. This without
adding actual explicit Vector opcodes for any of the same.

Thus it should be very clear: REMAP, like all of SV, is abstracted out, meaning that unlike traditional Vector
ISAs which would typically only have a limited set of instructions that can be structure-packed (LD/ST and
Move operations being the most common), REMAP may be applied to literally any instruction: CRs, Arithmetic,
Logical, LD/ST, even Vectorised Branch-Conditional.

When SUBVL is greater than 1 a given group of Subvector elements are kept together: effectively the group
becomes the element, and with REMAP applying to elements (not sub-elements) each group is REMAPed
together. Swizzle can however be applied to the same instruction as REMAP, providing re-sequencing of Subvector
elements which REMAP cannot. Also as explained in {Swizzle Move}, {Pack / Unpack} and the {SVP64
Appendix}, Pack and Unpack Mode bits can extend down into Sub-vector elements to influence vec2/vec3/vec4
sequential reordering, but even here, REMAP reordering is not individually extended down to the actual
sub-vector elements themselves. This keeps the relevant Predicate Mask bit applicable to the Subvector group,

149

CHAPTER 14. REMAP SUBSYSTEM 150

just as it does when REMAP is not active.

In its general form, REMAP is quite expensive to set up, and on some implementations may introduce latency,
so should realistically be used only where it is worthwhile. Given that even with latency the fact that up to 127
operations can be Deterministically issued (from a single instruction) it should be clear that REMAP should not
be dismissed for possible latency alone. Commonly-used patterns such as Matrix Multiply, DCT and FFT have
helper instruction options which make REMAP easier to use.

Future specification note: future versions of the REMAP Management instructions will extend to EXT1xx
Prefixed variants. This will overcome some of the limitations present in the 32-bit variants of the REMAP
Management instructions that at present require direct writing to SVSHAPE0-3 SPRs. Additional REMAP
Modes may also be introduced at that time.

There are four types of REMAP:

• Matrix, also known as 2D and 3D reshaping, can perform in-place Matrix transpose and rotate. The
Shapes are set up for an “Outer Product” Matrix Multiply.

• FFT/DCT, with full triple-loop in-place support: limited to Power-2 RADIX
• Indexing, for any general-purpose reordering, also includes limited 2D reshaping as well as Element

“offsetting”.
• Parallel Reduction, for scheduling a sequence of operations in a Deterministic fashion, in a way that

may be parallelised, to reduce a Vector down to a single value.
• Parallel Prefix Sum, implemented as a work-efficient Schedule, has several key Computer Science uses.

Again Prefix Sum is 100% Deterministic.

Best implemented on top of a Multi-Issue Out-of-Order Micro-architecture, REMAP Schedules are 100%
Deterministic including Indexing and are designed to be incorporated in between the Decode and Issue phases,
directly into Register Hazard Management.

As long as the SVSHAPE SPRs are not written to directly, Hardware may treat REMAP as 100% Deterministic:
all REMAP Management instructions take static operands (no dynamic register operands) with the exception of
Indexed Mode, and even then Architectural State is permitted to assume that the Indices are cacheable from the
point at which the svindex instruction is executed.

Parallel Reduction is unusual in that it requires a full vector array of results (not a scalar) and uses the rest
of the result Vector for the purposes of storing intermediary calculations. As these intermediary results are
Deterministically computed they may be useful. Additionally, because the intermediate results are always written
out it is possible to service Precise Interrupts without affecting latency (a common limitation of Vector ISAs
implementing explicit Parallel Reduction instructions, because their Architectural State cannot hold the partial
results).

14.1.1 Basic principle

The following illustrates why REMAP was added.

• normal vector element read/write of operands would be sequential (0 1 2 3)
• this is not appropriate for (e.g.) Matrix multiply which requires accessing elements in alternative sequences

(0 3 6 1 4 7 . . .)
• normal Vector ISAs use either Indexed-MV or Indexed-LD/ST to “cope” with this. both are expensive

(copy large vectors, spill through memory) and very few Packed SIMD ISAs cope with non-Power-2
(Duplicate-data inline-loop-unrolling is the costly solution)

• REMAP redefines the order of access according to set (Deterministic) “Schedules”.
• Matrix Schedules are not at all restricted to power-of-two boundaries making it unnecessary to have for

example specialised 3x4 transpose instructions of other Vector ISAs.
• DCT and FFT REMAP are RADIX-2 limited but this is the case in existing Packed/Predicated SIMD

ISAs anyway (and Bluestein Convolution is typically deployed to solve that).

Only the most commonly-used algorithms in computer science have REMAP support, due to the high cost in
both the ISA and in hardware. For arbitrary remapping the Indexed REMAP may be used.

CHAPTER 14. REMAP SUBSYSTEM 151

14.1.2 Example Usage

• svshape to set the type of reordering to be applied to an otherwise usual 0..VL-1 hardware for-loop
• svremap to set which registers a given reordering is to apply to (RA, RT etc)
• sv.{instruction} where any Vectorised register marked by svremap will have its ordering REMAPPED

according to the schedule set by svshape.

The following illustrative example multiplies a 3x4 and a 5x3 matrix to create a 5x4 result:

svshape 5,4,3,0,0 # Outer Product 5x4 by 4x3
svremap 15,1,2,3,0,0,0,0 # link Schedule to registers
sv.fmadds *0,*32,*64,*0 # 60 FMACs get executed here

• svshape sets up the four SVSHAPE SPRS for a Matrix Schedule
• svremap activates four out of five registers RA RB RC RT RS (15)
• svremap requests:
• RA to use SVSHAPE1
• RB to use SVSHAPE2
• RC to use SVSHAPE3
• RT to use SVSHAPE0
• RS Remapping to not be activated
• sv.fmadds has vectors RT=0, RA=32, RB=64, RC=0
• With REMAP being active each register’s element index is independently transformed using the specified

SHAPEs.

Thus the Vector Loop is arranged such that the use of the multiply-and-accumulate instruction executes precisely
the required Schedule to perform an in-place in-registers Outer Product Matrix Multiply with no need to perform
additional Transpose or register copy instructions. The example above may be executed as a unit test and demo,
here

Hardware Architectural note: with the Scheduling applying as a Phase between Decode and Issue in a Deterministic
fashion the Register Hazards may be easily computed and a standard Out-of-Order Micro-Architecture exploited
to good effect. Even an In-Order system may observe that for large Outer Product Schedules there will be no
stalls, but if the Matrices are particularly small size an In-Order system would have to stall, just as it would if
the operations were loop-unrolled without Simple-V. Thus: regardless of the Micro-Architecture the Hardware
Engineer should first consider how best to process the exact same equivalent loop-unrolled instruction stream.

14.1.3 Horizontal-Parallelism Hint

SVSTATE.hphint is an indicator to hardware of how many elements are 100% fully independent. Hardware is
permitted to assume that groups of elements up to hphint in size need not have Register (or Memory) Hazards
created between them (including when hphint > VL).

If care is not taken in setting hphint correctly it may wreak havoc. For example Matrix Outer Product relies on
the innermost loop computations being independent. If hphint is set to greater than the Outer Product depth
then data corruption is guaranteed to occur.

Likewise on FFTs it is assumed that each layer of the RADIX2 triple-loop is independent, but that there is strict
inter-layer Register Hazards. Therefore if hphint is set to greater than the RADIX2 width of the FFT, data
corruption is guaranteed.

Thus the key message is that setting hphint requires in-depth knowledge of the REMAP Algorithm Schedules,
given in the Appendix.

https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=src/openpower/decoder/isa/test_caller_svp64_matrix.py;h=c15479db9a36055166b6b023c7495f9ca3637333;hb=a17a252e474d5d5bf34026c25a19682e3f2015c3#l94

CHAPTER 14. REMAP SUBSYSTEM 152

14.1.4 REMAP types

This section summarises the motivation for each REMAP Schedule and briefly goes over their characteristics
and limitations. Further details on the Deterministic Precise-Interruptible algorithms used in these Schedules is
found in the {REMAP Appendix}.

14.1.4.1 Matrix (1D/2D/3D shaping)

Matrix Multiplication is a huge part of High-Performance Compute, and 3D. In many PackedSIMD as well as
Scalable Vector ISAs, non-power-of-two Matrix sizes are a serious challenge. PackedSIMD ISAs, in order to cope
with for example 3x4 Matrices, recommend rolling data-repetition and loop-unrolling. Aside from the cost of the
load on the L1 I-Cache, the trick only works if one of the dimensions X or Y are power-two. Prime Numbers
(5x7, 3x5) become deeply problematic to unroll.

Even traditional Scalable Vector ISAs have issues with Matrices, often having to perform data Transpose by
pushing out through Memory and back (costly), or computing Transposition Indices (costly) then copying to
another Vector (costly).

Matrix REMAP was thus designed to solve these issues by providing Hardware Assisted “Schedules” that can
view what would otherwise be limited to a strictly linear Vector as instead being 2D (even 3D) in-place reordered.
With both Transposition and non-power-two being supported the issues faced by other ISAs are mitigated.

Limitations of Matrix REMAP are that the Vector Length (VL) is currently restricted to 127: up to 127 FMAs
(or other operation) may be performed in total. Also given that it is in-registers only at present some care has to
be taken on regfile resource utilisation. However it is perfectly possible to utilise Matrix REMAP to perform the
three inner-most “kernel” loops of the usual 6-level “Tiled” large Matrix Multiply, without the usual difficulties
associated with SIMD.

Also the svshape instruction only provides access to part of the Matrix REMAP capability. Rotation and
mirroring need to be done by programming the SVSHAPE SPRs directly, which can take a lot more instructions.
Future versions of SVP64 will include EXT1xx prefixed variants (psvshape) which provide more comprehensive
capacity and mitigate the need to write direct to the SVSHAPE SPRs.

14.1.4.2 FFT/DCT Triple Loop

DCT and FFT are some of the most astonishingly used algorithms in Computer Science. Radar, Audio, Video,
R.F. Baseband and dozens more. At least two DSPs, TMS320 and Hexagon, have VLIW instructions specially
tailored to FFT.

An in-depth analysis showed that it is possible to do in-place in-register DCT and FFT as long as twin-result
“butterfly” instructions are provided. These can be found in the [[openpower/isa/svfparith]] page if performing
IEEE754 FP transforms. (For fixed-point transforms, equivalent 3-in 2-out integer operations would be required).
These “butterfly” instructions avoid the need for a temporary register because the two array positions being
overwritten will be “in-flight” in any In-Order or Out-of-Order micro-architecture.

DCT and FFT Schedules are currently limited to RADIX2 sizes and do not accept predicate masks. Given
that it is common to perform recursive convolutions combining smaller Power-2 DCT/FFT to create larger
DCT/FFTs in practice the RADIX2 limit is not a problem. A Bluestein convolution to compute arbitrary length
is demonstrated by Project Nayuki

14.1.4.3 Indexed

The purpose of Indexing is to provide a generalised version of Vector ISA “Permute” instructions, such as VSX
vperm. The Indexing is abstracted out and may be applied to much more than an element move/copy, and is not
limited for example to the number of bytes that can fit into a VSX register. Indexing may be applied to LD/ST
(even on Indexed LD/ST instructions such as sv.lbzx), arithmetic operations, extsw: there is no artificial limit.

https://www.nayuki.io/res/free-small-fft-in-multiple-languages/fft.py

CHAPTER 14. REMAP SUBSYSTEM 153

The only major caveat is that the registers to be used as Indices must not be modified by any instruction after
Indexed Mode is established, and neither must MAXVL be altered. Additionally, no register used as an Index
may exceed MAXVL-1.

Failure to observe these conditions results in UNDEFINED behaviour. These conditions allow a Read-After-Write
(RAW) Hazard to be created on the entire range of Indices to be subsequently used, but a corresponding
Write-After-Read Hazard by any instruction that modifies the Indices does not have to be created. Given the
large number of registers involved in Indexing this is a huge resource saving and reduction in micro-architectural
complexity. MAXVL is likewise included in the RAW Hazards because it is involved in calculating how many
registers are to be considered Indices.

With these Hazard Mitigations in place, high-performance implementations may read-cache the Indices at the
point where a given svindex instruction is called (or SVSHAPE SPRs - and MAXVL - directly altered) by
issuing background GPR register file reads whilst other instructions are being issued and executed.

The original motivation for Indexed REMAP was to mitigate the need to add an expensive mv.x to the Scalar
ISA, which was likely to be rejected as a stand-alone instruction (GPR(RT) <- GPR(GPR(RA))). Usually a Vector
ISA would add a non-conflicting variant (as in VSX vperm) but it is common to need to permute by source,
with the risk of conflict, that has to be resolved, for example, in AVX-512 with conflictd.

Indexed REMAP on the other hand does not prevent conflicts (overlapping destinations), which on a
superficial analysis may be perceived to be a problem, until it is recalled that, firstly, Simple-V is designed
specifically to require Program Order to be respected, and that Matrix, DCT and FFT all already critically
depend on overlapping Reads/Writes: Matrix uses overlapping registers as accumulators. Thus the Register
Hazard Management needed by Indexed REMAP has to be in place anyway.

Programmer’s Note: hphint may be used to help hardware identify parallelism opportunities but it is critical to
remember that the groupings are by FLOOR(step/MAXVL) not FLOOR(REMAP(step)/MAXVL).

The cost compared to Matrix and other REMAPs (and Pack/Unpack) is clearly that of the additional reading
of the GPRs to be used as Indices, plus the setup cost associated with creating those same Indices. If any
Deterministic REMAP can cover the required task, clearly it is adviseable to use it instead.

Programmer’s note: some algorithms may require skipping of Indices exceeding VL-1, not MAXVL-1. This may
be achieved programmatically by performing an sv.cmp *BF,*RA,RB where RA is the same GPRs used in the
Indexed REMAP, and RB contains the value of VL returned from setvl. The resultant CR Fields may then be
used as Predicate Masks to exclude those operations with an Index exceeding VL-1.

14.1.4.4 Parallel Reduction

Vector Reduce Mode issues a deterministic tree-reduction schedule to the underlying micro-architecture. Like
Scalar reduction, the “Scalar Base” (Power ISA v3.0B) operation is leveraged, unmodified, to give the appearance
and effect of Reduction. Parallel Reduction is not limited to Power-of-two but is limited as usual by the total
number of element operations (127) as well as available register file size.

In Horizontal-First Mode, Vector-result reduction requires the destination to be a Vector, which will be used to
store intermediary results, in order to achieve a correct final result.

Given that the tree-reduction schedule is deterministic, Interrupts and exceptions can therefore also be precise.
The final result will be in the first non-predicate-masked-out destination element, but due again to the deterministic
schedule programmers may find uses for the intermediate results, even for non-commutative Defined Word
operations.

When Rc=1 a corresponding Vector of co-resultant CRs is also created. No special action is taken: the result
and its CR Field are stored “as usual” exactly as all other SVP64 Rc=1 operations.

Note that the Schedule only makes sense on top of certain instructions: X-Form with a Register Profile of
RT,RA,RB is fine because two sources and the destination are all the same type. Like Scalar Reduction, nothing
is prohibited: the results of execution on an unsuitable instruction may simply not make sense. With care,
even 3-input instructions (madd, fmadd, ternlogi) may be used, and whilst it is down to the Programmer to

CHAPTER 14. REMAP SUBSYSTEM 154

walk through the process the Programmer can be confident that the Parallel-Reduction is guaranteed 100%
Deterministic.

Critical to note regarding use of Parallel-Reduction REMAP is that, exactly as with all REMAP Modes, the
svshape instruction requests a certain Vector Length (number of elements to reduce) and then sets VL and
MAXVL at the number of operations needed to be carried out. Thus, equally as importantly, like Matrix
REMAP the total number of operations is restricted to 127. Any Parallel-Reduction requiring more operations
will need to be done manually in batches (hierarchical recursive Reduction).

Also important to note is that the Deterministic Schedule is arranged so that some implementations may
parallelise it (as long as doing so respects Program Order and Register Hazards). Performance (speed) of any
given implementation is neither strictly defined or guaranteed. As with the Vulkan(tm) Specification, strict
compliance is paramount whilst performance is at the discretion of Implementors.

Parallel-Reduction with Predication

To avoid breaking the strict RISC-paradigm, keeping the Issue-Schedule completely separate from the actual
element-level (scalar) operations, Move operations are not included in the Schedule. This means that the
Schedule leaves the final (scalar) result in the first-non-masked element of the Vector used. With the predicate
mask being dynamic (but deterministic) at a superficial glance it seems this result could be anywhere.

If that result is needed to be moved to a (single) scalar register then a follow-up sv.mv/sm=predicate rt,
*ra instruction will be needed to get it, where the predicate is the exact same predicate used in the prior
Parallel-Reduction instruction.

• If there was only a single bit in the predicate then the result will not have moved or been altered from the
source vector prior to the Reduction

• If there was more than one bit the result will be in the first element with a predicate bit set.

In either case the result is in the element with the first bit set in the predicate mask. Thus, no move/copy within
the Reduction itself was needed.

Programmer’s Note: For some hardware implementations the vector-to-scalar copy may be a slow operation, as
may the Predicated Parallel Reduction itself. It may be better to perform a pre-copy of the values, compressing
them (VREDUCE-style) into a contiguous block, which will guarantee that the result goes into the very first
element of the destination vector, in which case clearly no follow-up predicated vector-to-scalar MV operation is
needed. A VREDUCE effect is achieved by setting just a source predicate mask on Twin-Predicated operations.

Usage conditions

The simplest usage is to perform an overwrite, specifying all three register operands the same.

svshape parallelreduce, 6
sv.add *8, *8, *8

The Reduction Schedule will issue the Parallel Tree Reduction spanning registers 8 through 13, by adjusting the
offsets to RT, RA and RB as necessary (see “Parallel Reduction algorithm” in a later section).

A non-overwrite is possible as well but just as with the overwrite version, only those destination elements necessary
for storing intermediary computations will be written to: the remaining elements will not be overwritten and
will not be zero’d.

svshape parallelreduce, 6
sv.add *0, *8, *8

However it is critical to note that if the source and destination are not the same then the trick of using a
follow-up vector-scalar MV will not work.

14.1.4.5 Sub-Vector Horizontal Reduction

To achieve Sub-Vector Horizontal Reduction, Pack/Unpack should be enabled, which will turn the Schedule
around such that issuing of the Scalar Defined Words is done with SUBVL looping as the inner loop not the

CHAPTER 14. REMAP SUBSYSTEM 155

outer loop. Rc=1 with Sub-Vectors (SUBVL=2,3,4) is UNDEFINED behaviour.

Programmer’s Note: Overwrite Parallel Reduction with Sub-Vectors will clearly result in data corruption. It may
be best to perform a Pack/Unpack Transposing copy of the data first

14.1.4.6 Parallel Prefix Sum

This is a work-efficient Parallel Schedule that for example produces Trangular or Factorial number sequences.
Half of the Prefix Sum Schedule is near-identical to Parallel Reduction. Whilst the Arithmetic mapreduce Mode
(/mr) may achieve the same end-result, implementations may only implement Mapreduce in serial form (or give
the appearance to Programmers of the same). The Parallel Prefix Schedule is required to be implemented in such
a way that its Deterministic Schedule may be parallelised. Like the Reduction Schedule it is 100% Deterministic
and consequently may be used with non-commutative operations.

14.1.5 Determining Register Hazards

For high-performance (Multi-Issue, Out-of-Order) systems it is critical to be able to statically determine the
extent of Vectors in order to allocate pre-emptive Hazard protection. The next task is to eliminate masked-out
elements using predicate bits, freeing up the associated Hazards.

For non-REMAP situations VL is sufficient to ascertain early Hazard coverage, and with SVSTATE being a high
priority cached quantity at the same level of MSR and PC this is not a problem.

The problems come when REMAP is enabled. Indexed REMAP must instead use MAXVL as the earliest (simplest)
batch-level Hazard Reservation indicator (after taking element-width overriding on the Index source into
consideration), but Matrix, FFT and Parallel Reduction must all use completely different schemes. The reason
is that VL is used to step through the total number of operations, not the number of registers. The “Saving
Grace” is that all of the REMAP Schedules are 100% Deterministic.

Advance-notice Parallel computation and subsequent cacheing of all of these complex Deterministic REMAP
Schedules is strongly recommended, thus allowing clear and precise multi-issue batched Hazard coverage to
be deployed, even for Indexed Mode. This is only possible for Indexed due to the strict guidelines given to
Programmers.

In short, there exists solutions to the problem of Hazard Management, with varying degrees of refinement possible
at correspondingly increasing levels of complexity in hardware.

A reminder: when Rc=1 each result register (element) has an associated co-result CR Field (one per result
element). Thus above when determining the Write-Hazards for result registers the corresponding Write-Hazards
for the corresponding associated co-result CR Field must not be forgotten, including when Predication is used.

14.1.6 REMAP area of SVSTATE SPR

The following bits of the SVSTATE SPR are used for REMAP:

32:33	34:35	36:37	38:39	40:41	42:46	62
mi0	mi1	mi2	mo0	mo1	SVme	RMpst

mi0-2 and mo0-1 each select SVSHAPE0-3 to apply to a given register. mi0-2 apply to RA, RB, RC respectively,
as input registers, and likewise mo0-1 apply to output registers (RT/FRT, RS/FRS) respectively. SVme is 5
bits (one for each of mi0-2/mo0-1) and indicates whether the SVSHAPE is actively applied or not, and if so, to
which registers.

• bit 4 of SVme indicates if mi0 is applied to source RA / FRA / BA / BFA / RT / FRT
• bit 3 of SVme indicates if mi1 is applied to source RB / FRB / BB
• bit 2 of SVme indicates if mi2 is applied to source RC / FRC / BC

CHAPTER 14. REMAP SUBSYSTEM 156

• bit 1 of SVme indicates if mo0 is applied to result RT / FRT / BT / BF
• bit 0 of SVme indicates if mo1 is applied to result Effective Address / FRS / RS (LD/ST-with-update has

an implicit 2nd write register, RA)

The “persistence” bit if set will result in all Active REMAPs being applied indefinitely.

CHAPTER 14. REMAP SUBSYSTEM 157

14.2 svremap instruction

SVRM-Form:

0 6 11 13 15 17 19 21 22:25 26:31
PO SVme mi0 mi1 mi2 mo0 mo1 pst rsvd XO

• svremap SVme,mi0,mi1,mi2,mo0,mo1,pst

Pseudo-code:

registers RA RB RC RT EA/FRS SVSHAPE0-3 indices
SVSTATE[32:33] <- mi0
SVSTATE[34:35] <- mi1
SVSTATE[36:37] <- mi2
SVSTATE[38:39] <- mo0
SVSTATE[40:41] <- mo1
enable bit for RA RB RC RT EA/FRS
SVSTATE[42:46] <- SVme
persistence bit (applies to more than one instruction)
SVSTATE[62] <- pst

Special Registers Altered:

SVSTATE

svremap determines the relationship between registers and SVSHAPE SPRs. The bitmask SVme determines
which registers have a REMAP applied, and mi0-mo1 determine which shape is applied to an activated register.
the pst bit if cleared indicated that the REMAP operation shall only apply to the immediately-following
instruction. If set then REMAP remains permanently enabled until such time as it is explicitly disabled, either
by setvl setting a new MAXVL, or with another svremap instruction. svindex and svshape2 are also capable
of setting or clearing persistence, as well as partially covering a subset of the capability of svremap to set
register-to-SVSHAPE relationships.

Programmer’s Note: applying non-persistent svremap to an instruction that has no REMAP enabled or is a
Scalar operation will obviously have no effect but the bits 32 to 46 will at least have been set in SVSTATE. This
may prove useful when using svindex or svshape2.

Hardware Architectural Note: when persistence is not set it is critically important to treat the svremap and
the following SVP64 instruction as an indivisible fused operation. No state is stored in the SVSTATE SPR in
order to allow continuation should an Interrupt occur between the two instructions. Thus, Interrupts must be
prohibited from occurring or other workaround deployed. When persistence is set this issue is moot.

It is critical to note that if persistence is clear then svremap is the only way to activate REMAP on any given
(following) instruction. If persistence is set however then all SVP64 instructions go through REMAP as long as
SVme is non-zero.

CHAPTER 14. REMAP SUBSYSTEM 158

14.3 SHAPE Remapping SPRs

There are four “shape” SPRs, SHAPE0-3, 32-bits in each, which have the same format.

Shape is 32-bits. When SHAPE is set entirely to zeros, remapping is disabled: the register’s elements are a linear
(1D) vector.

0:5 6:11 12:17 18:20 21:23 24:27 28:29 30:31 Mode
xdimsz ydimsz zdimsz permute invxyz offset skip mode Matrix
xdimsz ydimsz SVGPR 11/ sk1/invxy offset elwidth 0b00 Indexed
xdimsz mode zdimsz submode2 invxyz offset submode 0b01 DCT/FFT
rsvd rsvd xdimsz rsvd invxyz offset submode 0b10 Red/Sum

0b11 rsvd

mode sets different behaviours (straight matrix multiply, FFT, DCT).

• mode=0b00 sets straight Matrix Mode
• mode=0b00 with permute=0b110 or 0b111 sets Indexed Mode
• mode=0b01 sets “FFT/DCT” mode and activates submodes
• mode=0b10 sets “Parallel Reduction or Prefix-Sum” Schedules.

Architectural Resource Allocation note: the four SVSHAPE SPRs are best allocated sequentially and contiguously
in order that sv.mtspr may be used. This is safe to do as long as SVSTATE.SVme=0

14.3.1 Parallel Reduction / Prefix-Sum Mode

Creates the Schedules for Parallel Tree Reduction and Prefix-Sum

• submode=0b00 selects the left operand index for Reduction

• submode=0b01 selects the right operand index for Reduction

• submode=0b10 selects the left operand index for Prefix-Sum

• submode=0b11 selects the right operand index for Prefix-Sum

• When bit 0 of invxyz is set, the order of the indices in the inner for-loop are reversed. This has the
side-effect of placing the final reduced result in the last-predicated element. It also has the indirect
side-effect of swapping the source registers: Left-operand index numbers will always exceed Right-operand
indices. When clear, the reduced result will be in the first-predicated element, and Left-operand indices
will always be less than Right-operand ones.

• When bit 1 of invxyz is set, the order of the outer loop step is inverted: stepping begins at the nearest
power-of two to half of the vector length and reduces by half each time. When clear the step will begin at
2 and double on each inner loop.

14.3.2 FFT/DCT mode

submode2=0 is for FFT. For FFT submode the following schedules may be selected:

• submode=0b00 selects the j offset of the innermost for-loop of Tukey-Cooley
• submode=0b10 selects the j+halfsize offset of the innermost for-loop of Tukey-Cooley
• submode=0b11 selects the k of exptable (which coefficient)

When submode2 is 1 or 2, for DCT inner butterfly submode the following schedules may be selected. When
submode2 is 1, additional bit-reversing is also performed.

• submode=0b00 selects the j offset of the innermost for-loop, in-place

CHAPTER 14. REMAP SUBSYSTEM 159

• submode=0b010 selects the j+halfsize offset of the innermost for-loop, in reverse-order, in-place
• submode=0b10 selects the ci count of the innermost for-loop, useful for calculating the cosine coefficient
• submode=0b11 selects the size offset of the outermost for-loop, useful for the cosine coefficient cos(ci

+ 0.5) * pi / size

When submode2 is 3 or 4, for DCT outer butterfly submode the following schedules may be selected. When
submode is 3, additional bit-reversing is also performed.

• submode=0b00 selects the j offset of the innermost for-loop,
• submode=0b01 selects the j+1 offset of the innermost for-loop,

zdimsz is used as an in-place “Stride”, particularly useful for column-based in-place DCT/FFT.

14.3.3 Matrix Mode

In Matrix Mode, skip allows dimensions to be skipped from being included in the resultant output index. this
allows sequences to be repeated: 0 0 0 1 1 1 2 2 2 ... or in the case of skip=0b11 this results in modulo 0
1 2 0 1 2 ...

• skip=0b00 indicates no dimensions to be skipped
• skip=0b01 sets “skip 1st dimension”
• skip=0b10 sets “skip 2nd dimension”
• skip=0b11 sets “skip 3rd dimension”

invxyz will invert the start index of each of x, y or z. If invxyz[0] is zero then x-dimensional counting begins
from 0 and increments, otherwise it begins from xdimsz-1 and iterates down to zero. Likewise for y and z.

offset will have the effect of offsetting the result by offset elements:

for i in 0..VL-1:
GPR(RT + remap(i) + SVSHAPE.offset) =

this appears redundant because the register RT could simply be changed by a compiler, until element width
overrides are introduced. also bear in mind that unlike a static compiler SVSHAPE.offset may be set dynamically
at runtime.

xdimsz, ydimsz and zdimsz are offset by 1, such that a value of 0 indicates that the array dimensionality for that
dimension is 1. any dimension not intended to be used must have its value set to 0 (dimensionality of 1). A
value of xdimsz=2 would indicate that in the first dimension there are 3 elements in the array. For example, to
create a 2D array X,Y of dimensionality X=3 and Y=2, set xdimsz=2, ydimsz=1 and zdimsz=0

The format of the array is therefore as follows:

array[xdimsz+1][ydimsz+1][zdimsz+1]

However whilst illustrative of the dimensionality, that does not take the “permute” setting into account. “permute”
may be any one of six values (0-5, with values of 6 and 7 indicating “Indexed” Mode). The table below shows
how the permutation dimensionality order works:

permute order array format
000 0,1,2 (xdim+1)(ydim+1)(zdim+1)
001 0,2,1 (xdim+1)(zdim+1)(ydim+1)
010 1,0,2 (ydim+1)(xdim+1)(zdim+1)
011 1,2,0 (ydim+1)(zdim+1)(xdim+1)
100 2,0,1 (zdim+1)(xdim+1)(ydim+1)
101 2,1,0 (zdim+1)(ydim+1)(xdim+1)
110 0,1 Indexed (xdim+1)(ydim+1)
111 1,0 Indexed (ydim+1)(xdim+1)

CHAPTER 14. REMAP SUBSYSTEM 160

In other words, the “permute” option changes the order in which nested for-loops over the array would be done.
See executable python reference code for further details.

Note: permute=0b110 and permute=0b111 enable Indexed REMAP Mode, described below

With all these options it is possible to support in-place transpose, in-place rotate, Matrix Multiply and
Convolutions, without being limited to Power-of-Two dimension sizes.

14.3.4 Indexed Mode

Indexed Mode activates reading of the element indices from the GPR and includes optional limited 2D reordering.
In its simplest form (without elwidth overrides or other modes):

def index_remap(i):
return GPR((SVSHAPE.SVGPR<<1)+i) + SVSHAPE.offset

for i in 0..VL-1:
element_result =
GPR(RT + indexed_remap(i)) = element_result

With element-width overrides included, and using the pseudocode from the SVP64 [[sv/svp64/appendix#elwidth]]
elwidth section this becomes:

def index_remap(i):
svreg = SVSHAPE.SVGPR << 1
srcwid = elwid_to_bitwidth(SVSHAPE.elwid)
offs = SVSHAPE.offset
return get_polymorphed_reg(svreg, srcwid, i) + offs

for i in 0..VL-1:
element_result =
rt_idx = indexed_remap(i)
set_polymorphed_reg(RT, destwid, rt_idx, element_result)

Matrix-style reordering still applies to the indices, except limited to up to 2 Dimensions (X,Y). Ordering is
therefore limited to (X,Y) or (Y,X) for in-place Transposition. Only one dimension may optionally be skipped.
Inversion of either X or Y or both is possible (2D mirroring). Pseudocode for Indexed Mode (including elwidth
overrides) may be written in terms of Matrix Mode, specifically purposed to ensure that the 3rd dimension (Z)
has no effect:

def index_remap(ISHAPE, i):
MSHAPE.skip = 0b0 || ISHAPE.sk1
MSHAPE.invxyz = 0b0 || ISHAPE.invxy
MSHAPE.xdimsz = ISHAPE.xdimsz
MSHAPE.ydimsz = ISHAPE.ydimsz
MSHAPE.zdimsz = 0 # disabled
if ISHAPE.permute = 0b110 # 0,1

MSHAPE.permute = 0b000 # 0,1,2
if ISHAPE.permute = 0b111 # 1,0

MSHAPE.permute = 0b010 # 1,0,2
el_idx = remap_matrix(MSHAPE, i)
svreg = ISHAPE.SVGPR << 1
srcwid = elwid_to_bitwidth(ISHAPE.elwid)
offs = ISHAPE.offset
return get_polymorphed_reg(svreg, srcwid, el_idx) + offs

The most important observation above is that the Matrix-style remapping occurs first and the Index lookup
second. Thus it becomes possible to perform in-place Transpose of Indices which may have been costly to set

CHAPTER 14. REMAP SUBSYSTEM 161

up or costly to duplicate (waste register file space). In other words: it is fine for two or more SVSHAPEs to
simultaneously use the same Indices, but one SVSHAPE has different 2D dimensions and ordering from the
others.

CHAPTER 14. REMAP SUBSYSTEM 162

14.4 svshape instruction

SVM-Form

svshape SVxd,SVyd,SVzd,SVRM,vf

0:5 6:10 11:15 16:20 21:24 25 26:31 name
PO SVxd SVyd SVzd SVRM vf XO svshape

See {REMAP Appendix} for svshape pseudocode

Special Registers Altered:

SVSTATE, SVSHAPE0-3

svshape is a convenience instruction that reduces instruction count for common usage patterns, particularly
Matrix, DCT and FFT. It sets up (overwrites) all required SVSHAPE SPRs and also modifies SVSTATE
including VL and MAXVL. Using svshape therefore does not also require setvl.

Fields:

• SVxd - SV REMAP “xdim” (X-dimension)
• SVyd - SV REMAP “ydim” (Y-dimension, sometimes used for sub-mode selection)
• SVzd - SV REMAP “zdim” (Z-dimension)
• SVRM - SV REMAP Mode (0b00000 for Matrix, 0b00001 for FFT etc.)
• vf - sets “Vertical-First” mode
• XO - standard 6-bit XO field

Note: SVxd, SVyz and SVzd are all stored “off-by-one”. In the assembler mnemonic the values 1-32 are stored
in binary as 0b00000..0b11111

There are 12 REMAP Modes (2 Modes are RESERVED for svshape2, 2 Modes are RESERVED)

SVRM Remap Mode description
0b0000 Matrix 1/2/3D
0b0001 FFT Butterfly
0b0010 reserved
0b0011 DCT Outer butterfly
0b0100 DCT Inner butterfly, on-the-fly (Vertical-First Mode)
0b0101 DCT COS table index generation
0b0110 DCT half-swap
0b0111 Parallel Reduction and Prefix Sum
0b1000 reserved for svshape2
0b1001 reserved for svshape2
0b1010 reserved
0b1011 iDCT Outer butterfly
0b1100 iDCT Inner butterfly, on-the-fly (Vertical-First Mode)
0b1101 iDCT COS table index generation
0b1110 iDCT half-swap
0b1111 FFT half-swap

Examples showing how all of these Modes operate exists in the online SVP64 unit tests. Explaining these Modes
further in detail is beyond the scope of this document.

In Indexed Mode, there are only 5 bits available to specify the GPR to use, out of 128 GPRs (7 bit numbering).
Therefore, only the top 5 bits are given in the SVxd field: the bottom two implicit bits will be zero (SVxd ||

https://git.libre-soc.org/?p=openpower-isa.git;a=tree;f=src/openpower/decoder/isa;hb=HEAD

CHAPTER 14. REMAP SUBSYSTEM 163

0b00).

svshape has limited applicability due to being a 32-bit instruction. The full capability of SVSHAPE SPRs may
be accessed by directly writing to SVSHAPE0-3 with mtspr. Circumstances include Matrices with dimensions
larger than 32, and in-place Transpose. Potentially a future v3.1 Prefixed instruction, psvshape, may extend
the capability here.

Programmer’s Note: Parallel Reduction Mode is selected by setting SVRM=7,SVyd=1. Prefix Sum Mode is selected
by setting SVRM=7,SVyd=3:

Vector length of 8.
svshape 8, 3, 1, 0x7, 0
activate SVSHAPE0 (prefix-sum lhs) for RA
activate SVSHAPE1 (prefix-sum rhs) for RT and RB
svremap 7, 0, 1, 0, 1, 0, 0
sv.add *10, *10, *10

Architectural Resource Allocation note: the SVRM field is carefully crafted to allocate two Modes, corresponding
to bits 21-23 within the instruction being set to the value 0b100, to svshape2 (not svshape). These two Modes
are considered “RESERVED” within the context of svshape but it is absolutely critical to allocate the exact same
pattern in XO for both instructions in bits 26-31.

CHAPTER 14. REMAP SUBSYSTEM 164

14.5 svindex instruction

SVI-Form

0:5 6:10 11:15 16:20 21:25 26:31 Form
PO SVG rmm SVd ew/yx/mm/sk XO SVI-Form

• svindex SVG,rmm,SVd,ew,SVyx,mm,sk

See {REMAP Appendix} for svindex pseudocode

Special Registers Altered:

SVSTATE, SVSHAPE0-3

svindex is a convenience instruction that reduces instruction count for Indexed REMAP Mode. It sets up
(overwrites) all required SVSHAPE SPRs and unlike svshape can modify the REMAP area of the SVSTATE
SPR as well, including setting persistence. The relevant SPRs may be directly programmed with mtspr however
it is laborious to do so: svindex saves instructions covering much of Indexed REMAP capability.

Fields:

• SVd - SV REMAP x/y dim
• rmm - REMAP mask: sets remap mi0-2/mo0-1 and SVSHAPEs, controlled by mm
• ew - sets element width override on the Indices
• SVG - GPR SVG<<2 to be used for Indexing
• yx - 2D reordering to be used if yx=1
• mm - mask mode. determines how rmm is interpreted.
• sk - Dimension skipping enabled

Note: SVd, like SVxd, SVyz and SVzd of svshape, are all stored “off-by-one”. In the assembler mnemonic the
values 1-32 are stored in binary as 0b00000..0b11111.

Note: when yx=1,sk=0 the second dimension is calculated as CEIL(MAXVL/SVd).

When mm=0:

• rmm, like REMAP.SVme, has bit 0 correspond to mi0, bit 1 to mi1, bit 2 to mi2, bit 3 to mo0 and bit 4 to
mi1

• all SVSHAPEs and the REMAP parts of SVSHAPE are first reset (initialised to zero)
• for each bit set in the 5-bit rmm, in order, the first as-yet-unset SVSHAPE will be updated with the other

operands in the instruction, and the REMAP SPR set.
• If all 5 bits of rmm are set then both mi0 and mo1 use SVSHAPE0.
• SVSTATE persistence bit is cleared
• No other alterations to SVSTATE are carried out

Example 1: if rmm=0b00110 then SVSHAPE0 and SVSHAPE1 are set up, and the REMAP SPR set so that
mi1 uses SVSHAPE0 and mi2 uses mi2. REMAP.SVme is also set to 0b00110, REMAP.mi1=0 (SVSHAPE0)
and REMAP.mi2=1 (SVSHAPE1)

Example 2: if rmm=0b10001 then again SVSHAPE0 and SVSHAPE1 are set up, but the REMAP SPR is set so
that mi0 uses SVSHAPE0 and mo1 uses SVSHAPE1. REMAP.SVme=0b10001, REMAP.mi0=0, REMAP.mo1=1

Rough algorithmic form:

marray = [mi0, mi1, mi2, mo0, mo1]
idx = 0
for bit = 0 to 4:

if not rmm[bit]: continue
setup(SVSHAPE[idx])
SVSTATE{marray[bit]} = idx

CHAPTER 14. REMAP SUBSYSTEM 165

idx = (idx+1) modulo 4

When mm=1:

• bits 0-2 (MSB0 numbering) of rmm indicate an index selecting mi0-mo1
• bits 3-4 (MSB0 numbering) of rmm indicate which SVSHAPE 0-3 shall be updated
• only the selected SVSHAPE is overwritten
• only the relevant bits in the REMAP area of SVSTATE are updated
• REMAP persistence bit is set.

Example 1: if rmm=0b01110 then bits 0-2 (MSB0) are 0b011 and bits 3-4 are 0b10. thus, mo0 is selected and
SVSHAPE2 to be updated. REMAP.SVme[3] will be set high and REMAP.mo0 set to 2 (SVSHAPE2).

Example 2: if rmm=0b10011 then bits 0-2 (MSB0) are 0b100 and bits 3-4 are 0b11. thus, mo1 is selected and
SVSHAPE3 to be updated. REMAP.SVme[4] will be set high and REMAP.mo1 set to 3 (SVSHAPE3).

Rough algorithmic form:

marray = [mi0, mi1, mi2, mo0, mo1]
bit = rmm[0:2]
idx = rmm[3:4]
setup(SVSHAPE[idx])
SVSTATE{marray[bit]} = idx
SVSTATE.pst = 1

In essence, mm=0 is intended for use to set as much of the REMAP State SPRs as practical with a single
instruction, whilst mm=1 is intended to be a little more refined.

Usage guidelines

• Disable 2D mapping: to only perform Indexing without reordering use SVd=1,sk=0,yx=0 (or set SVd
to a value larger or equal to VL)

• Modulo 1D mapping: to perform Indexing cycling through the first N Indices use SVd=N,sk=0,yx=0
where VL>N. There is no requirement to set VL equal to a multiple of N.

• Modulo 2D transposed: SVd=M,sk=0,yx=1, sets xdim=M,ydim=CEIL(MAXVL/M).

Beyond these mappings it becomes necessary to write directly to the SVSTATE SPRs manually.

CHAPTER 14. REMAP SUBSYSTEM 166

14.6 svshape2 (offset-priority)

SVM2-Form

0:5 6:9 10 11:15 16:20 21:24 25 26:31 Form
PO offs yx rmm SVd 100/mm sk XO SVM2-Form

• svshape2 offs,yx,rmm,SVd,sk,mm

See {REMAP Appendix} for svshape2 pseudocode

Special Registers Altered:

SVSTATE, SVSHAPE0-3

svshape2 is an additional convenience instruction that prioritises setting SVSHAPE.offset. Its primary purpose
is for use when element-width overrides are used. It has identical capabilities to svindex in terms of both
options (skip, etc.) and ability to activate REMAP (rmm, mask mode) but unlike svindex it does not set GPR
REMAP: only a 1D or 2D svshape, and unlike svshape it can set an arbitrary SVSHAPE.offset immediate.

One of the limitations of Simple-V is that Vector elements start on the boundary of the Scalar regfile, which
is fine when element-width overrides are not needed. If the starting point of a Vector with smaller elwidths
must begin in the middle of a register, normally there would be no way to do so except through costly LD/ST.
SVSHAPE.offset caters for this scenario and svshape2 makes it easier to access.

Operand Fields:

• offs (4 bits) - unsigned offset
• yx (1 bit) - swap XY to YX
• SVd dimension size
• rmm REMAP mask
• mm mask mode
• sk (1 bit) skips 1st dimension if set

Dimensions are calculated exactly as svindex. rmm and mm are as per svindex.

Programmer’s Note: offsets for svshape2 may be specified in the range 0-15. Given that the principle of Simple-V
is to fit on top of byte-addressable register files and that GPR and FPR are 64-bit (8 bytes) it should be clear that
the offset may, when elwidth=8, begin an element-level operation starting element zero at any arbitrary byte.
On cursory examination attempting to go beyond the range 0-7 seems unnecessary given that the next GPR
or FPR is an alias for an offset in the range 8-15. Thus by simply increasing the starting Vector point of the
operation to the next register it can be seen that the offset of 0-7 would be sufficient. Unfortunately however
some operations are EXTRA2-encoded it is not possible to increase the GPR/FPR register number by one,
because EXTRA2-encoding of GPR/FPR Vector numbers are restricted to even numbering. For CR Fields the
EXTRA2 encoding is even more sparse. The additional offset range (8-15) helps overcome these limitations.

Hardware Implementor’s note: with the offsets only being immediates and with register numbering being entirely
immediate as well it is possible to correctly compute Register Hazards without requiring reading the contents of
any SPRs. If however there are instructions that have directly written to the SVSTATE or SVSHAPE SPRs and
those instructions are still in-flight then this position is clearly invalid. This is why Programmers are strongly
discouraged from directly writing to these SPRs.

Architectural Resource Allocation note: this instruction shares the space of svshape. Therefore it is critical that
the two instructions, svshape and svshape2 have the exact same XO in bits 26 thru 31. It is also critical that
for svshape2, bit 21 of XO is a 1, bit 22 of XO is a 0, and bit 23 of XO is a 0.

[[!tag standards]]

Chapter 15

Swizzle Move

[[!tag standards]]

15.1 mv.swizzle

Links

• https://bugs.libre-soc.org/show_bug.cgi?id=139
• https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-June/004913.html

Swizzle is a type of permute shorthand allowing arbitrary selection of elements from vec2/3/4 creating a new
vec2/3/4. Their value lies in the high occurrence of Swizzle in 3D Shader Binaries (over 10% of all instructions).
Swizzle is usually done on a per-vec-operand basis in 3D GPU ISAs, making for extremely long instructions (64
bits or greater), however it is not practical to add two or more sets of 12-bit prefixes into a single instruction. A
compromise is to provide a Swizzle “Move”: one such move is then required for each operand used in a subsequent
instruction. The encoding for Swizzle Move embeds static predication into the swizzle as well as constants 1/1.0
and 0/0.0, and if Saturation is enabled maximum arithmetic constants may be placed into the destination as
well.

An extremely important aspect of 3D GPU workloads is that the source and destination subvector lengths may
be different. A vector of contiguous array of vec3 (XYZ) may only have 2 elements (ZY) swizzle-copied to a
contiguous array of vec2. A contiguous array of vec2 sources may have multiple of each vec2 elements (XY)
copied to a contiguous vec4 array (YYXX or XYXX). For this reason, when Vectorised Swizzle Moves support
independent subvector lengths for both source and destination.

Although conceptually similar to vpermd of Packed SIMD VSX, Swizzle Moves come in immediate-only form with
only up to four selectors, where VSX refers to individual bytes and may not copy constants to the destination.
3D Shader programs commonly use the letters “XYZW” when referring to the four swizzle indices, and also often
use the letters “RGBA” if referring to pixel data. These designations are also part of both the OpenGL(TM)
and Vulkan(TM) specifications.

As a standalone Scalar operation this instruction is valuable if Prefixed with SVP64Single (providing Predication).
Combined with cmpi it synthesises Compare-and-Swap.

15.2 Format

0.5 6.10 11.15 16.27 28.31 name Form
PO RTp RAp imm 0011 mv.swiz DQ-Form

167

https://bugs.libre-soc.org/show_bug.cgi?id=139
https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-June/004913.html

CHAPTER 15. SWIZZLE MOVE 168

0.5 6.10 11.15 16.27 28.31 name Form
PO RTp RAp imm 1011 fmv.swiz DQ-Form

this gives a 12 bit immediate across bits 16 to 27. Each swizzle mnemonic (XYZW), commonly known from 3D
GPU programming, has an associated index. 3 bits of the immediate are allocated to each:

imm 0.2 3.5 6.8 9.11
swizzle X Y Z W
pixel R G B A
index 0 1 2 3

The options for each Swizzle are:

• 0b000 to indicate “skip”. this is equivalent to predicate masking
• 0b001 subvector length end marker (length=4 if not present)
• 0b010 to indicate “constant 0”
• 0b011 to indicate “constant 1” (or 1.0)
• 0b1NN index 0 thru 3 to copy from subelement in pos XYZW

In very simplistic terms the relationship between swizzle indices (NN, above), source, and destination is:

dest[i] = src[swiz[i]]

Note that 8 options are needed (not 6) because option 0b001 encodes the subvector length, and option 0b000
allows static predicate masking (skipping) to be encoded within the swizzle immediate. For example it allows
“W.Y.” to specify: “copy W to position X, and Y to position Z, leave the other two positions Y and W unaltered”

0 1 2 3
X Y Z W source

| |
+----+ |
. | |

+--------------+
| . | .
W . Y . swizzle
| . | .
| Y | W Y,W unmodified
| . | .
W Y Y W dest

As a Scalar instruction

Given that XYZW Swizzle can select simultaneously between one and four register operands, a full version of this
instruction would be an eye-popping 8 64-bit operands: 4-in, 4-out. As part of a Scalar ISA this not practical. A
compromise is to cut the registers required by half, placing it on-par with lq, stq and Indexed Load-with-update
instructions. When part of the Scalar Power ISA (not SVP64 Vectorised) mv.swiz and fmv.swiz operate on four
32-bit quantities, reducing this instruction to a feasible 2-in, 2-out pairs of 64-bit registers:

swizzle name source dest half
X RA RT lo-half
Y RA RT hi-half
Z RA+1 RT+1 lo-half
W RA+1 RT+1 hi-half

CHAPTER 15. SWIZZLE MOVE 169

When RA=RT (in-place swizzle) any portion of RT not covered by the Swizzle is unmodified. For example a
Swizzle of “..XY” will copy the contents RA+1 into RT but leave RT+1 unmodified.

When RA!=RT any part of RT or RT+1 not set as a destination by the Swizzle will be set to zero. A Swizzle of
“..XY” would copy the contents RA+1 into RT, but set RT+1 to zero.

Also, making life easier, RT and RA are only permitted to be even (no overlapping can occur). This makes
RT (and RA) a “pair” exactly as in lq and stq. Scalar Swizzle instructions must be atomically indivisible: an
Exception or Interrupt may not occur during the Moves.

Note that unlike the Vectorised variant, when RT=RA the Scalar variant must buffer (read) both 64-bit RA
registers before writing to the RT pair (in an Out-of-Order Micro-architecture, both of the register pair must be
“in-flight”). This ensures that register file corruption does not occur.

SVP64 Vectorised

Vectorised Swizzle may be considered to contain an extended static predicate mask for subvectors (SUBVL=2/3/4).
Due to the skipping caused by the static predication capability, the destination subvector length can be different
from the source subvector length, and consequently the destination subvector length is encoded into the Swizzle.

When Vectorised, given the use-case is for a High-performance GPU, the fundamental assumption is that
Micro-coding or other technique will be deployed in hardware to issue multiple Scalar MV operations and
full parallel crossbars, which would be impractical in a smaller Scalar-only Micro-architecture. Therefore the
restriction imposed on the Scalar mv.swiz to 32-bit quantities as the default is lifted on sv.mv.swiz.

Additionally, in order to make life easier for implementers, some of whom may wish, especially for Embedded
GPUs, to use multi-cycle Micro-coding, the usual strict Element-level Program Order is relaxed. An overlap
between all and any Vectorised sources and destination Elements for the entirety of the Vector Loop 0..VL-1 is
UNDEFINED behaviour.

This in turn implies that Traps and Exceptions are, as usual, permitted in between element-level moves, because
due to there being no overlap there is no risk of destroying a source with an overwrite. This is unlike the Scalar
variant which, when RT=RA, must buffer both halves of the RT pair.

Determining the source and destination subvector lengths is tricky. Swizzle Pseudocode:

swiz[0] = imm[0:3] # X
swiz[1] = imm[3:6] # Y
swiz[2] = imm[6:9] # Z
swiz[3] = imm[9:12] # W
determine implied subvector length from Swizzle
dst_subvl = 4
for i in range(4):

if swiz[i] == 0b001:
dst_subvl = i+1
break

What is going on here is that the option is provided to have different source and destination subvector lengths,
by exploiting redundancy in the Swizzle Immediate. With the Swizzles marking what goes into each destination
position, the marker “0b001” may be used to indicate the end. If no marker is present then the destination
subvector length may be assumed to be 4. SUBVL is considered to be the “source” subvector length.

Pseudocode exploiting python “yield” for clarity: element-width overrides, Saturation and Predication also left
out, for clarity:

def index_src():
for i in range(VL):

for j in range(SUBVL):
if swiz[j] == 0b000: # skip

continue
if swiz[j] == 0b001: # end

break

CHAPTER 15. SWIZZLE MOVE 170

if swiz[j] in [0b010, 0b011]:
yield (i*SUBVL, CONSTANT)

else:
yield (i*SUBVL, swiz[j]-3)

def index_dest():
for i in range(VL):

for j in range(dst_subvl):
if swiz[j] == 0b000: # skip

continue
yield i*dst_subvl+j

walk through both source and dest indices simultaneously
for (src_idx, offs), dst_idx in zip(index_src(), index_dst()):

if offs == CONSTANT:
set(RT+dst_idx, CONSTANT)

else
move_operation(RT+dst_idx, RA+src_idx+offs)

Vertical-First Mode

It is important to appreciate that only the main loop VL is Vertical-First: the SUBVL loop is not. This makes
sense from the perspective that the Swizzle Move is a group of moves, but is still a single instruction that
happens to take vec2/3/4 as operands. Vertical-First only performing one of the sub-elements at a time rather
than operating on the entire vec2/3/4 together would violate that expectation. The exceptions to this, explained
later, are when Pack/Unpack is enabled.

Effect of Saturation on Vectorised Swizzle

A useful convenience for pixel data is to be able to insert values 0x7f or 0xff as magic constants for arbitrary
R,G,B or A. Therefore, when Saturation is enabled and a Swizzle=0b011 (Constant 1) is requested, the maximum
permitted Saturated value is inserted rather than Constant 1. sv.mv.swiz/sats/vec2/ew=8 RT.v, RA.v, Y1
would insert the 2nd subelement (Y) into the first destination subelement and the signed-maximum constant
0x7f into the second. A Constant 0 Swizzle on the other hand still inserts zero because there is no encoding
space to select between -1, 0 and 1, and 0 and max values are more useful.

15.3 Pack/Unpack Mode:

It is possible to apply Pack and Unpack to Vectorised swizzle moves. The interaction requires specific explanation
because it involves the separate SUBVLs (with destination SUBVL being separate). Key to understanding is that
the source and destination SUBVL be “outer” loops instead of inner loops, exactly as in {REMAP subsystem}
Matrix mode, under the control of SVSTATE.PACK and SVSTATE.UNPACK.

Illustrating a “normal” SVP64 operation with SUBVL!=1 (assuming no elwidth overrides):

def index():
for i in range(VL):

for j in range(SUBVL):
yield i*SUBVL+j

for idx in index():
operation_on(RA+idx)

For a separate source/dest SUBVL (again, no elwidth overrides):

yield an outer-SUBVL or inner VL loop with SUBVL
def index_dest(outer):

if outer:

CHAPTER 15. SWIZZLE MOVE 171

for j in range(dst_subvl):
for i in range(VL):

yield j*VL+i
else:

for i in range(VL):
for j in range(dst_subvl):

yield i*dst_subvl+j

yield an outer-SUBVL or inner VL loop with SUBVL
def index_src(outer):

if outer:
for j in range(SUBVL):

for i in range(VL):
yield j*VL+i

else:
for i in range(VL):

for j in range(SUBVL):
yield i*SUBVL+j

“yield” from python is used here for simplicity and clarity. The two Finite State Machines for the generation of
the source and destination element offsets progress incrementally in lock-step.

Just as in {Pack / Unpack}, when PACK_en is set it is the source that swaps to Outer-subvector loops, and when
UNPACK_en is set it is the destination that swaps its loop-order. Setting both PACK_en and UNPACK_en is neither
prohibited nor UNDEFINED because the behaviour is fully deterministic.

However, in Vertical-First Mode, when both are enabled, with both source and destination being outer loops a
single step of srstep and dststep is performed. Contrast this when one of PACK_en is set, it is the destination
that is an inner subvector loop, and therefore Vertical-First runs through the entire dst_subvl group. Likewise
when UNPACK_en is set it is the source subvector that is run through as a group.

if VERTICAL_FIRST:
must run through SUBVL or dst_subvl elements, to keep
the subvector "together". weirdness occurs due to
PACK_en/UNPACK_en
num_runs = SUBVL # 1-4
if PACK_en:

num_runs = dst_subvl # destination still an inner loop
if PACK_en and UNPACK_en:

num_runs = 1 # both are outer loops
for substep in num_runs:

(src_idx, offs) = yield from index_src(PACK_en)
dst_idx = yield from index_dst(UNPACK_en)
move_operation(RT+dst_idx, RA+src_idx+offs)

Chapter 16

Pack / Unpack

[[!tag standards]]

16.1 Vector Pack/Unpack operations

In the SIMD VSX set, section 6.8.1 and 6.8.2 p254 of v3.0B has a series of pack and unpack operations. Additional
pixel pack/unpack instructions also exist.

In SVP64, Pack and Unpack are achieved in the abstract for application on all Vectoriseable instructions.

• See https://bugs.libre-soc.org/show_bug.cgi?id=230#c30
• https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-June/004911.html

The effect of Pack and unpack could be covered by {REMAP subsystem} by using Matrix 2D layouts on either
source or destination but is quite expensive to do so. Additionally, with pressure on the Scalar 32-bit opcode
space it is more appropriate to compromise by adding required capability in SVP64 as a high priority (part of the
Management Instructions). {Swizzle Move} is sufficiently unusual to justify a base Scalar 32-bit instruction but
pack/unpack is not. What, ultimately, was decided, was to make Pack/Unpack part of the SVSTATE [[sv/spr]].

16.2 SVSTATE Pack/unpack Mode bits

Described in {SVP64 Appendix} the Pack/Unpack Modes allow selective Transposition of Sub-vector elements,
on both source and destination. {Swizzle Move} is unique in that the Subvector length may be different for
source and destination.

172

https://bugs.libre-soc.org/show_bug.cgi?id=230#c30
https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-June/004911.html

Appendix A

SVP64 Appendix

A.1 Appendix

• https://bugs.libre-soc.org/show_bug.cgi?id=574 Saturation
• https://bugs.libre-soc.org/show_bug.cgi?id=558#c47 Parallel Prefix
• https://bugs.libre-soc.org/show_bug.cgi?id=697 Reduce Modes
• https://bugs.libre-soc.org/show_bug.cgi?id=864 parallel prefix simulator
• https://bugs.libre-soc.org/show_bug.cgi?id=809 OV sv.addex discussion
• ARM SVE Fault-first https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf

This is the appendix to {SVP64 Chapter}, providing explanations of modes etc. leaving the main svp64 page’s
primary purpose as outlining the instruction format.

Table of contents:

[[!toc]]

A.1.1 Partial Implementations

It is perfectly legal to implement subsets of SVP64 as long as illegal instruction traps are always raised on
unimplemented features, so that soft-emulation is possible, even for future revisions of SVP64. With SVP64
being partly controlled through contextual SPRs, a little care has to be taken.

All SPRs not implemented including reserved ones for future use must raise an illegal instruction trap if read or
written. This allows software the opportunity to emulate the context created by the given SPR.

See {Compliancy Levels} for full details.

A.1.2 XER, SO and other global flags

Vector systems are expected to be high performance. This is achieved through parallelism, which requires that
elements in the vector be independent. XER SO/OV and other global “accumulation” flags (CR.SO) cause
Read-Write Hazards on single-bit global resources, having a significant detrimental effect.

Consequently in SV, XER.SO behaviour is disregarded (including in cmp instructions). XER.SO is not read, but
XER.OV may be written, breaking the Read-Modify-Write Hazard Chain that complicates microarchitectural
implementations. This includes when scalar identity behaviour occurs. If precise OpenPOWER v3.0/1
scalar behaviour is desired then OpenPOWER v3.0/1 instructions should be used without an SV Prefix.

TODO jacob add about OV https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ia-large-integer-arithmetic-paper.pdf

173

https://bugs.libre-soc.org/show_bug.cgi?id=574
https://bugs.libre-soc.org/show_bug.cgi?id=558#c47
https://bugs.libre-soc.org/show_bug.cgi?id=697
https://bugs.libre-soc.org/show_bug.cgi?id=864
https://bugs.libre-soc.org/show_bug.cgi?id=809
https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf

APPENDIX A. SVP64 APPENDIX 174

Of note here is that XER.SO and OV may already be disregarded in the Power ISA v3.0/1 SFFS (Scalar Fixed
and Floating) Compliancy Subset. SVP64 simply makes it mandatory to disregard XER.SO even for other
Subsets, but only for SVP64 Prefixed Operations.

XER.CA/CA32 on the other hand is expected and required to be implemented according to standard Power ISA
Scalar behaviour. Interestingly, due to SVP64 being in effect a hardware for-loop around Scalar instructions
executing in precise Program Order, a little thought shows that a Vectorised Carry-In-Out add is in effect a Big
Integer Add, taking a single bit Carry In and producing, at the end, a single bit Carry out. High performance
implementations may exploit this observation to deploy efficient Parallel Carry Lookahead.

assume VL=4, this results in 4 sequential ops (below)
sv.adde r0.v, r4.v, r8.v

instructions that get executed in backend hardware:
adde r0, r4, r8 # takes carry-in, produces carry-out
adde r1, r5, r9 # takes carry from previous
...
adde r3, r7, r11 # likewise

It can clearly be seen that the carry chains from one 64 bit add to the next, the end result being that a 256-bit
“Big Integer Add with Carry” has been performed, and that CA contains the 257th bit. A one-instruction 512-bit
Add-with-Carry may be performed by setting VL=8, and a one-instruction 1024-bit Add-with-Carry by setting
VL=16, and so on. More on this in [[openpower/sv/biginteger]]

A.1.3 EXTRA Field Mapping

The purpose of the 9-bit EXTRA field mapping is to mark individual registers (RT, RA, BFA) as either scalar
or vector, and to extend their numbering from 0..31 in Power ISA v3.0 to 0..127 in SVP64. Three of the 9 bits
may also be used up for a 2nd Predicate (Twin Predication) leaving a mere 6 bits for qualifying registers. As can
be seen there is significant pressure on these (and in fact all) SVP64 bits.

In Power ISA v3.1 prefixing there are bits which describe and classify the prefix in a fashion that is independent
of the suffix. MLSS for example. For SVP64 there is insufficient space to make the SVP64 Prefix “self-describing”,
and consequently every single Scalar instruction had to be individually analysed, by rote, to craft an EXTRA
Field Mapping. This process was semi-automated and is described in this section. The final results, which are
part of the SVP64 Specification, are here: [[openpower/opcode_regs_deduped]]

• Firstly, every instruction’s mnemonic (add RT, RA, RB) was analysed from reading the markdown format-
ted version of the Scalar pseudocode which is machine-readable and found in [[openpower/isatables]]. The
analysis gives, by instruction, a “Register Profile”. add RT, RA, RB for example is given a designation
RM-2R-1W because it requires two GPR reads and one GPR write.

• Secondly, the total number of registers was added up (2R-1W is 3 registers) and if less than or equal to
three then that instruction could be given an EXTRA3 designation. Four or more is given an EXTRA2
designation because there are only 9 bits available.

• Thirdly, the instruction was analysed to see if Twin or Single Predication was suitable. As a general rule
this was if there was only a single operand and a single result (extw and LD/ST) however it was found that
some 2 or 3 operand instructions also qualify. Given that 3 of the 9 bits of EXTRA had to be sacrificed for
use in Twin Predication, some compromises were made, here. LDST is Twin but also has 3 operands in
some operations, so only EXTRA2 can be used.

• Fourthly, a packing format was decided: for 2R-1W an EXTRA3 indexing could have been decided that
RA would be indexed 0 (EXTRA bits 0-2), RB indexed 1 (EXTRA bits 3-5) and RT indexed 2 (EXTRA
bits 6-8). In some cases (LD/ST with update) RA-as-a-source is given a different EXTRA index from
RA-as-a-result (because it is possible to do, and perceived to be useful). Rc=1 co-results (CR0, CR1) are
always given the same EXTRA index as their main result (RT, FRT).

• Fifthly, in an automated process the results of the analysis were outputted in CSV Format for use
in machine-readable form by sv_analysis.py https://git.libre-soc.org/?p=openpower-isa.git;a=
blob;f=src/openpower/sv/sv_analysis.py;hb=HEAD

https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=src/openpower/sv/sv_analysis.py;hb=HEAD
https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=src/openpower/sv/sv_analysis.py;hb=HEAD

APPENDIX A. SVP64 APPENDIX 175

This process was laborious but logical, and, crucially, once a decision is made (and ratified) cannot be reversed.
Qualifying future Power ISA Scalar instructions for SVP64 is strongly advised to utilise this same process and
the same sv_analysis.py program as a canonical method of maintaining the relationships. Alterations to that
same program which change the Designation is prohibited once finalised (ratified through the Power ISA WG
Process). It would be similar to deciding that add should be changed from X-Form to D-Form.

A.1.4 Single Predication

This is a standard mode normally found in Vector ISAs. every element in every source Vector and in the
destination uses the same bit of one single predicate mask.

In SVSTATE, for Single-predication, implementors MUST increment both srcstep and dststep, but depending
on whether sz and/or dz are set, srcstep and dststep can still potentially become different indices. Only when
sz=dz is srcstep guaranteed to equal dststep at all times.

Note that in some Mode Formats there is only one flag (zz). This indicates that both sz and dz are set to the
same.

Example 1:

• VL=4
• mask=0b1101
• sz=0, dz=1

The following schedule for srcstep and dststep will occur:

srcstep dststep comment
0 0 both mask[src=0] and mask[dst=0] are 1
1 2 sz=1 but dz=0: dst skips mask[1], src soes not
2 3 mask[src=2] and mask[dst=3] are 1
3 end loop has ended because dst reached VL-1

Example 2:

• VL=4
• mask=0b1101
• sz=1, dz=0

The following schedule for srcstep and dststep will occur:

srcstep dststep comment
0 0 both mask[src=0] and mask[dst=0] are 1
2 1 sz=0 but dz=1: src skips mask[1], dst does not
3 2 mask[src=3] and mask[dst=2] are 1
end 3 loop has ended because src reached VL-1

In both these examples it is crucial to note that despite there being a single predicate mask, with sz and dz
being different, srcstep and dststep are being requested to react differently.

Example 3:

• VL=4
• mask=0b1101
• sz=0, dz=0

The following schedule for srcstep and dststep will occur:

APPENDIX A. SVP64 APPENDIX 176

srcstep dststep comment
0 0 both mask[src=0] and mask[dst=0] are 1
2 2 sz=0 and dz=0: both src and dst skip mask[1]
3 3 mask[src=3] and mask[dst=3] are 1
end end loop has ended because src and dst reached VL-1

Here, both srcstep and dststep remain in lockstep because sz=dz=0

A.1.5 Twin Predication

This is a novel concept that allows predication to be applied to a single source and a single dest register. The
following types of traditional Vector operations may be encoded with it, without requiring explicit opcodes to do
so

• VSPLAT (a single scalar distributed across a vector)
• VEXTRACT (like LLVM IR extractelement)
• VINSERT (like LLVM IR insertelement)
• VCOMPRESS (like LLVM IR llvm.masked.compressstore.*)
• VEXPAND (like LLVM IR llvm.masked.expandload.*)

Those patterns (and more) may be applied to:

• mv (the usual way that V* ISA operations are created)
• exts* sign-extension
• rwlinm and other RS-RA shift operations (note: excluding those that take RA as both a src and dest.

These are not 1-src 1-dest, they are 2-src, 1-dest)
• LD and ST (treating AGEN as one source)
• FP fclass, fsgn, fneg, fabs, fcvt, frecip, fsqrt etc.
• Condition Register ops mfcr, mtcr and other similar

This is a huge list that creates extremely powerful combinations, particularly given that one of the predicate
options is (1<<r3)

Additional unusual capabilities of Twin Predication include a back-to-back version of VCOMPRESS-VEXPAND
which is effectively the ability to do sequentially ordered multiple VINSERTs. The source predicate selects a
sequentially ordered subset of elements to be inserted; the destination predicate specifies the sequentially ordered re-
cipient locations. This is equivalent to llvm.masked.compressstore.* followed by llvm.masked.expandload.*
with a single instruction, but abstracted out from Load/Store and applicable in general to any 2P instruction.

This extreme power and flexibility comes down to the fact that SVP64 is not actually a Vector ISA: it is a
loop-abstraction-concept that is applied in general to Scalar operations, just like the x86 REP instruction (if put
on steroids).

A.1.6 Pack/Unpack

The pack/unpack concept of VSX vpack is abstracted out as Sub-Vector reordering. Two bits in the SVSHAPE
[[sv/spr]] enable either “packing” or “unpacking” on the subvectors vec2/3/4.

First, illustrating a “normal” SVP64 operation with SUBVL!=1: (assuming no elwidth overrides), note that the
VL loop is outer and the SUBVL loop inner:

def index():
for i in range(VL):

for j in range(SUBVL):
yield i*SUBVL+j

https://releases.llvm.org/11.0.0/docs/LangRef.html#extractelement-instruction
https://releases.llvm.org/11.0.0/docs/LangRef.html#insertelement-instruction
https://releases.llvm.org/11.0.0/docs/LangRef.html#llvm-masked-compressstore-intrinsics
https://releases.llvm.org/11.0.0/docs/LangRef.html#llvm-masked-expandload-intrinsics

APPENDIX A. SVP64 APPENDIX 177

for idx in index():
operation_on(RA+idx)

For pack/unpack (again, no elwidth overrides), note that now there is the option to swap the SUBVL and VL
loop orders. In effect the Pack/Unpack performs a Transpose of the subvector elements. Illustrated this time
with a GPR mv operation:

yield an outer-SUBVL or inner VL loop with SUBVL
def index_p(outer):

if outer:
for j in range(SUBVL): # subvl is outer

for i in range(VL): # vl is inner
yield i+VL*j

else:
for i in range(VL): # vl is outer

for j in range(SUBVL): # subvl is inner
yield i*SUBVL+j

walk through both source and dest indices simultaneously
for src_idx, dst_idx in zip(index_p(PACK), index_p(UNPACK)):

move_operation(RT+dst_idx, RA+src_idx)

“yield” from python is used here for simplicity and clarity. The two Finite State Machines for the generation of
the source and destination element offsets progress incrementally in lock-step.

Example VL=2, SUBVL=3, PACK_en=1 - elements grouped by vec3 will be redistributed such that Sub-elements
0 are packed together, Sub-elements 1 are packed together, as are Sub-elements 2.

srcstep=0 srcstep=1
0 1 2 3 4 5

dststep=0 dststep=1 dststep=2
0 3 1 4 2 5

Setting of both PACK and UNPACK is neither prohibited nor UNDEFINED because the reordering is fully deterministic,
and additional REMAP reordering may be applied. Combined with Matrix REMAP this would give potentially
up to 4 Dimensions of reordering.

Pack/Unpack has quirky interactions on {Swizzle Move} because it can set a different subvector length for
destination, and has a slightly different pseudocode algorithm for Vertical-First Mode.

Ordering is as follows:

• SVSHAPE srcstep, dststep, ssubstep and dsubstep are advanced sequentially depending on
PACK/UNPACK.

• srcstep and dststep are pushed through REMAP to compute actual Element offsets.
• Swizzle is independently applied to ssubstep and dsubstep

Pack/Unpack is enabled (set up) through {svstep instruction}.

A.1.7 Reduce modes

Reduction in SVP64 is deterministic and somewhat of a misnomer. A normal Vector ISA would have explicit
Reduce opcodes with defined characteristics per operation: in SX Aurora there is even an additional scalar
argument containing the initial reduction value, and the default is either 0 or 1 depending on the specifics of the
explicit opcode. SVP64 fundamentally has to utilise existing Scalar Power ISA v3.0B operations, which presents
some unique challenges.

The solution turns out to be to simply define reduction as permitting deterministic element-based schedules to
be issued using the base Scalar operations, and to rely on the underlying microarchitecture to resolve Register

APPENDIX A. SVP64 APPENDIX 178

Hazards at the element level. This goes back to the fundamental principle that SV is nothing more than a
Sub-Program-Counter sitting between Decode and Issue phases.

For Scalar Reduction, Microarchitectures may take opportunities to parallelise the reduction but only if in doing
so they preserve strict Program Order at the Element Level. Opportunities where this is possible include an OR
operation or a MIN/MAX operation: it may be possible to parallelise the reduction, but for Floating Point it is
not permitted due to different results being obtained if the reduction is not executed in strict Program-Sequential
Order.

In essence it becomes the programmer’s responsibility to leverage the pre-determined schedules to desired effect.

A.1.7.1 Scalar result reduction and iteration

Scalar Reduction per se does not exist, instead is implemented in SVP64 as a simple and natural relaxation of
the usual restriction on the Vector Looping which would terminate if the destination was marked as a Scalar.
Scalar Reduction by contrast keeps issuing Vector Element Operations even though the destination register is
marked as scalar and the same register is used as a source register. Thus it is up to the programmer to be aware
of this, observe some conventions, and thus end up achieving the desired outcome of scalar reduction.

It is also important to appreciate that there is no actual imposition or restriction on how this mode is utilised:
there will therefore be several valuable uses (including Vector Iteration and “Reverse-Gear”) and it is up to the
programmer to make best use of the (strictly deterministic) capability provided.

In this mode, which is suited to operations involving carry or overflow, one register must be assigned, by
convention by the programmer to be the “accumulator”. Scalar reduction is thus categorised by:

• One of the sources is a Vector
• the destination is a scalar
• optionally but most usefully when one source scalar register is also the scalar destination (which may be

informally termed by convention the “accumulator”)
• That the source register type is the same as the destination register type identified as the “accumulator”.

Scalar reduction on cmp, setb or isel makes no sense for example because of the mixture between CRs
and GPRs.

Note that issuing instructions in Scalar reduce mode such as setb are neither UNDEFINED nor prohibited, despite
them not making much sense at first glance. Scalar reduce is strictly defined behaviour, and the cost in hardware
terms of prohibition of seemingly non-sensical operations is too great. Therefore it is permitted and required
to be executed successfully. Implementors MAY choose to optimise such instructions in instances where their
use results in “extraneous execution”, i.e. where it is clear that the sequence of operations, comprising multiple
overwrites to a scalar destination without cumulative, iterative, or reductive behaviour (no “accumulator”),
may discard all but the last element operation. Identification of such is trivial to do for setb and cmp: the
source register type is a completely different register file from the destination. Likewise Scalar reduction when the
destination is a Vector is as if the Reduction Mode was not requested. However it would clearly be unacceptable
to perform such optimisations on cache-inhibited LD/ST, so some considerable care needs to be taken.

Typical applications include simple operations such as ADD r3, r10.v, r3 where, clearly, r3 is being used to
accumulate the addition of all elements of the vector starting at r10.

add RT, RA,RB but when RT==RA
for i in range(VL):

iregs[RA] += iregs[RB+i] # RT==RA

However, unless the operation is marked as “mapreduce” (sv.add/mr) SV ordinarily terminates at the first
scalar operation. Only by marking the operation as “mapreduce” will it continue to issue multiple sub-looped
(element) instructions in Program Order.

To perform the loop in reverse order, the RG (reverse gear) bit must be set. This may be useful in situations
where the results may be different (floating-point) if executed in a different order. Given that there is no actual
prohibition on Reduce Mode being applied when the destination is a Vector, the “Reverse Gear” bit turns out

APPENDIX A. SVP64 APPENDIX 179

to be a way to apply Iterative or Cumulative Vector operations in reverse. sv.add/rg r3.v, r4.v, r4.v for
example will start at the opposite end of the Vector and push a cumulative series of overlapping add operations
into the Execution units of the underlying hardware.

Other examples include shift-mask operations where a Vector of inserts into a single destination register is
required (see {Bitmanip ops}, bmset), as a way to construct a value quickly from multiple arbitrary bit-ranges
and bit-offsets. Using the same register as both the source and destination, with Vectors of different offsets
masks and values to be inserted has multiple applications including Video, cryptography and JIT compilation.

assume VL=4:
* Vector of shift-offsets contained in RC (r12.v)
* Vector of masks contained in RB (r8.v)
* Vector of values to be masked-in in RA (r4.v)
* Scalar destination RT (r0) to receive all mask-offset values
sv.bmset/mr r0, r4.v, r8.v, r12.v

Due to the Deterministic Scheduling, Subtract and Divide are still permitted to be executed in this mode,
although from an algorithmic perspective it is strongly discouraged. It would be better to use addition followed
by one final subtract, or in the case of divide, to get better accuracy, to perform a multiply cascade followed by
a final divide.

Note that single-operand or three-operand scalar-dest reduce is perfectly well permitted: the programmer may
still declare one register, used as both a Vector source and Scalar destination, to be utilised as the “accumulator”.
In the case of sv.fmadds and sv.maddhw etc this naturally fits well with the normal expected usage of these
operations.

If an interrupt or exception occurs in the middle of the scalar mapreduce, the scalar destination register MUST
be updated with the current (intermediate) result, because this is how Program Order is preserved (Vector
Loops are to be considered to be just another way of issuing instructions in Program Order). In this way, after
return from interrupt, the scalar mapreduce may continue where it left off. This provides “precise” exception
behaviour.

Note that hardware is perfectly permitted to perform multi-issue parallel optimisation of the scalar reduce
operation: it’s just that as far as the user is concerned, all exceptions and interrupts MUST be precise.

A.1.8 Fail-on-first

Data-dependent fail-on-first has two distinct variants: one for LD/ST (see {Load/Store Mode}, the other for
arithmetic operations (actually, CR-driven) {Arithmetic Mode} and CR operations {Condition Register Fields
Mode}. Note in each case the assumption is that vector elements are required appear to be executed in sequential
Program Order, element 0 being the first.

• LD/ST ffirst (not to be confused with Data-Dependent LD/ST ffirst) treats the first LD/ST in a vector
(element 0) as an ordinary one. Exceptions occur “as normal” on the first element. However for elements 1
and above, if an exception would occur, then VL is truncated to the previous element.

• Data-driven (CR-driven) fail-on-first activates when Rc=1 or other CR-creating operation produces a
result (including cmp). Similar to branch, an analysis of the CR is performed and if the test fails, the
vector operation terminates and discards all element operations above the current one (and the current
one if VLi is not set), and VL is truncated to either the previous element or the current one, depending on
whether VLi (VL “inclusive”) is set.

Thus the new VL comprises a contiguous vector of results, all of which pass the testing criteria (equal to zero,
less than zero).

The CR-based data-driven fail-on-first is new and not found in ARM SVE or RVV. At the same time it is also
“old” because it is a generalisation of the Z80 Block compare instructions, especially CPIR which is based on CP
(compare) as the ultimate “element” (suffix) operation to which the repeat (prefix) is applied. It is extremely
useful for reducing instruction count, however requires speculative execution involving modifications of VL to get
high performance implementations. An additional mode (RC1=1) effectively turns what would otherwise be an

https://rvbelzen.tripod.com/z80prgtemp/z80prg04.htm
http://z80-heaven.wikidot.com/instructions-set:cpir

APPENDIX A. SVP64 APPENDIX 180

arithmetic operation into a type of cmp. The CR is stored (and the CR.eq bit tested against the inv field). If
the CR.eq bit is equal to inv then the Vector is truncated and the loop ends. Note that when RC1=1 the result
elements are never stored, only the CRs.

VLi is only available as an option when Rc=0 (or for instructions which do not have Rc). When set, the
current element is always also included in the count (the new length that VL will be set to). This may be
useful in combination with “inv” to truncate the Vector to exclude elements that fail a test, or, in the case of
implementations of strncpy, to include the terminating zero.

In CR-based data-driven fail-on-first there is only the option to select and test one bit of each CR (just as with
branch BO). For more complex tests this may be insufficient. If that is the case, a vectorised crops (crand, cror)
may be used, and ffirst applied to the crop instead of to the arithmetic vector.

One extremely important aspect of ffirst is:

• LDST ffirst may never set VL equal to zero. This because on the first element an exception must be raised
“as normal”.

• CR-based data-dependent ffirst on the other hand can set VL equal to zero. This is the only means in the
entirety of SV that VL may be set to zero (with the exception of via the SV.STATE SPR). When VL is set
zero due to the first element failing the CR bit-test, all subsequent vectorised operations are effectively
nops which is precisely the desired and intended behaviour.

Another aspect is that for ffirst LD/STs, VL may be truncated arbitrarily to a nonzero value for any
implementation-specific reason. For example: it is perfectly reasonable for implementations to alter VL
when ffirst LD or ST operations are initiated on a nonaligned boundary, such that within a loop the subsequent
iteration of that loop begins subsequent ffirst LD/ST operations on an aligned boundary. Likewise, to reduce
workloads or balance resources.

CR-based data-dependent first on the other hand MUST not truncate VL arbitrarily to a length decided by the
hardware: VL MUST only be truncated based explicitly on whether a test fails. This because it is a precise test
on which algorithms will rely.

Note: there is no reverse-direction for Data-dependent Fail-First. REMAP will need to be activated to invert the
ordering of element traversal.

A.1.8.1 Data-dependent fail-first on CR operations (crand etc)

Operations that actually produce or alter CR Field as a result do not also in turn have an Rc=1 mode. However
it makes no sense to try to test the 4 bits of a CR Field for being equal or not equal to zero. Moreover, the
result is already in the form that is desired: it is a CR field. Therefore, CR-based operations have their own
SVP64 Mode, described in {Condition Register Fields Mode}

There are two primary different types of CR operations:

• Those which have a 3-bit operand field (referring to a CR Field)
• Those which have a 5-bit operand (referring to a bit within the whole 32-bit CR)

More details can be found in {Condition Register Fields Mode}.

A.1.9 CR Operations

CRs are slightly more involved than INT or FP registers due to the possibility for indexing individual bits
(crops BA/BB/BT). Again however the access pattern needs to be understandable in relation to v3.0B / v3.1B
numbering, with a clear linear relationship and mapping existing when SV is applied.

APPENDIX A. SVP64 APPENDIX 181

A.1.9.1 CR EXTRA mapping table and algorithm

Numbering relationships for CR fields are already complex due to being in BE format (the relationship is not
clearly explained in the v3.0B or v3.1 specification). However with some care and consideration the exact same
mapping used for INT and FP regfiles may be applied, just to the upper bits, as explained below. Firstly and
most importantly a new notation CR{field number} is used to indicate access to a particular Condition Register
Field (as opposed to the notation CR[bit] which accesses one bit of the 32 bit Power ISA v3.0B Condition
Register).

CR{n} refers to CR0 when n=0 and consequently, for CR0-7, is defined, in v3.0B pseudocode, as:

CR{n} = CR[32+n*4:35+n*4]

For SVP64 the relationship for the sequential numbering of elements is to the CR fields within the CR Register,
not to individual bits within the CR register.

The CR{n} notation is designed to give linear sequential numbering in the Vector domain on a straight sequential
Vector Loop.

In OpenPOWER v3.0/1, BF/BT/BA/BB are all 5 bits. The top 3 bits (0:2) select one of the 8 CRs; the bottom
2 bits (3:4) select one of 4 bits in that CR (EQ/LT/GT/SO). The numbering was determined (after 4 months of
analysis and research) to be as follows:

CR_index = (BA>>2) # top 3 bits
bit_index = (BA & 0b11) # low 2 bits
CR_reg = CR{CR_index} # get the CR
finally get the bit from the CR.
CR_bit = (CR_reg & (1<<bit_index)) != 0

When it comes to applying SV, it is the CR Field number CR_reg to which SV EXTRA2/3 applies, not the
CR_bit portion (bits 3-4):

if extra3_mode:
spec = EXTRA3

else:
spec = EXTRA2<<1 | 0b0

if spec[0]:
vector constructs "BA[0:2] spec[1:2] 00 BA[3:4]"
return ((BA >> 2)<<6) | # hi 3 bits shifted up

(spec[1:2]<<4) | # to make room for these
(BA & 0b11) # CR_bit on the end

else:
scalar constructs "00 spec[1:2] BA[0:4]"
return (spec[1:2] << 5) | BA

Thus, for example, to access a given bit for a CR in SV mode, the v3.0B algorithm to determine CR_reg is
modified to as follows:

CR_index = (BA>>2) # top 3 bits
if spec[0]:

vector mode, 0-124 increments of 4
CR_index = (CR_index<<4) | (spec[1:2] << 2)

else:
scalar mode, 0-32 increments of 1
CR_index = (spec[1:2]<<3) | CR_index

same as for v3.0/v3.1 from this point onwards
bit_index = (BA & 0b11) # low 2 bits
CR_reg = CR{CR_index} # get the CR
finally get the bit from the CR.
CR_bit = (CR_reg & (1<<bit_index)) != 0

APPENDIX A. SVP64 APPENDIX 182

Note here that the decoding pattern to determine CR_bit does not change.

Note: high-performance implementations may read/write Vectors of CRs in batches of aligned 32-bit chunks
(CR0-7, CR7-15). This is to greatly simplify internal design. If instructions are issued where CR Vectors do not
start on a 32-bit aligned boundary, performance may be affected.

A.1.9.2 CR fields as inputs/outputs of vector operations

CRs (or, the arithmetic operations associated with them) may be marked as Vectorised or Scalar. When Rc=1
in arithmetic operations that have no explicit EXTRA to cover the CR, the CR is Vectorised if the destination
is Vectorised. Likewise if the destination is scalar then so is the CR.

When vectorized, the CR inputs/outputs are sequentially read/written to 4-bit CR fields. Vectorised Integer
results, when Rc=1, will begin writing to CR8 (TBD evaluate) and increase sequentially from there. This is so
that:

• implementations may rely on the Vector CRs being aligned to 8. This means that CRs may be read or
written in aligned batches of 32 bits (8 CRs per batch), for high performance implementations.

• scalar Rc=1 operation (CR0, CR1) and callee-saved CRs (CR2-4) are not overwritten by vector Rc=1
operations except for very large VL

• CR-based predication, from CR32, is also not interfered with (except by large VL).

However when the SV result (destination) is marked as a scalar by the EXTRA field the standard v3.0B behaviour
applies: the accompanying CR when Rc=1 is written to. This is CR0 for integer operations and CR1 for FP
operations.

Note that yes, the CR Fields are genuinely Vectorised. Unlike in SIMD VSX which has a single CR (CR6) for a
given SIMD result, SV Vectorised OpenPOWER v3.0B scalar operations produce a tuple of element results:
the result of the operation as one part of that element and a corresponding CR element. Greatly simplified
pseudocode:

for i in range(VL):
calculate the vector result of an add
iregs[RT+i] = iregs[RA+i] + iregs[RB+i]
now calculate CR bits
CRs{8+i}.eq = iregs[RT+i] == 0
CRs{8+i}.gt = iregs[RT+i] > 0
... etc

If a “cumulated” CR based analysis of results is desired (a la VSX CR6) then a followup instruction must be
performed, setting “reduce” mode on the Vector of CRs, using cr ops (crand, crnor) to do so. This provides far
more flexibility in analysing vectors than standard Vector ISAs. Normal Vector ISAs are typically restricted
to “were all results nonzero” and “were some results nonzero”. The application of mapreduce to Vectorised cr
operations allows far more sophisticated analysis, particularly in conjunction with the new crweird operations
see {CR Weird ops}.

Note in particular that the use of a separate instruction in this way ensures that high performance multi-issue
OoO inplementations do not have the computation of the cumulative analysis CR as a bottleneck and hindrance,
regardless of the length of VL.

Additionally, SVP64 {Branch Mode} may be used, even when the branch itself is to the following instruction.
The combined side-effects of CTR reduction and VL truncation provide several benefits.

(see [[discussion]]. some alternative schemes are described there)

A.1.9.3 Rc=1 when SUBVL!=1

sub-vectors are effectively a form of Packed SIMD (length 2 to 4). Only 1 bit of predicate is allocated per
subvector; likewise only one CR is allocated per subvector.

APPENDIX A. SVP64 APPENDIX 183

This leaves a conundrum as to how to apply CR computation per subvector, when normally Rc=1 is exclusively
applied to scalar elements. A solution is to perform a bitwise OR or AND of the subvector tests. Given that OE
is ignored in SVP64, this field may (when available) be used to select OR or AND behavior.

A.1.9.3.1 Table of CR fields

CRn is the notation used by the OpenPower spec to refer to CR field #i, so FP instructions with Rc=1 write to
CR1 (n=1).

CRs are not stored in SPRs: they are registers in their own right. Therefore context-switching the full set of
CRs involves a Vectorised mfcr or mtcr, using VL=8 to do so. This is exactly as how scalar OpenPOWER
context-switches CRs: it is just that there are now more of them.

The 64 SV CRs are arranged similarly to the way the 128 integer registers are arranged. TODO a python
program that auto-generates a CSV file which can be included in a table, which is in a new page (so as not to
overwhelm this one). [[svp64/cr_names]]

A.1.10 Register Profiles

Instructions are broken down by Register Profiles as listed in the following auto-generated page: {SVP64
Augmentation Table}. These tables, despite being auto-generated, are part of the Specification.

A.1.11 SV pseudocode illustration

A.1.11.1 Single-predicated Instruction

illustration of normal mode add operation: zeroing not included, elwidth overrides not included. if there is no
predicate, it is set to all 1s

function op_add(rd, rs1, rs2) # add not VADD!
int i, id=0, irs1=0, irs2=0;
predval = get_pred_val(FALSE, rd);
for (i = 0; i < VL; i++)
STATE.srcoffs = i # save context
if (predval & 1<<i) # predication uses intregs

ireg[rd+id] <= ireg[rs1+irs1] + ireg[rs2+irs2];
if (!int_vec[rd].isvec) break;
if (rd.isvec) { id += 1; }
if (rs1.isvec) { irs1 += 1; }
if (rs2.isvec) { irs2 += 1; }
if (id == VL or irs1 == VL or irs2 == VL) {
end VL hardware loop
STATE.srcoffs = 0; # reset
return;

}

This has several modes:

• RT.v = RA.v RB.v
• RT.v = RA.v RB.s (and RA.s RB.v)
• RT.v = RA.s RB.s
• RT.s = RA.v RB.v
• RT.s = RA.v RB.s (and RA.s RB.v)
• RT.s = RA.s RB.s

APPENDIX A. SVP64 APPENDIX 184

All of these may be predicated. Vector-Vector is straightfoward. When one of source is a Vector and the other a
Scalar, it is clear that each element of the Vector source should be added to the Scalar source, each result placed
into the Vector (or, if the destination is a scalar, only the first nonpredicated result).

The one that is not obvious is RT=vector but both RA/RB=scalar. Here this acts as a “splat scalar result”,
copying the same result into all nonpredicated result elements. If a fixed destination scalar was intended, then
an all-Scalar operation should be used.

See https://bugs.libre-soc.org/show_bug.cgi?id=552

A.1.12 Assembly Annotation

Assembly code annotation is required for SV to be able to successfully mark instructions as “prefixed”.

A reasonable (prototype) starting point:

svp64 [field=value]*

Fields:

• ew=8/16/32 - element width
• sew=8/16/32 - source element width
• vec=2/3/4 - SUBVL
• mode=mr/satu/sats/crpred
• pred=1<<3/r3/r3/r10/r10/r30/~r30/lt/gt/le/ge/eq/ne

similar to x86 “rex” prefix.

For actual assembler:

sv.asmcode/mode.vec{N}.ew=8,sw=16,m={pred},sm={pred} reg.v, src.s

Qualifiers:

• m={pred}: predicate mask mode
• sm={pred}: source-predicate mask mode (only allowed in Twin-predication)
• vec{N}: vec2 OR vec3 OR vec4 - sets SUBVL=2/3/4
• ew={N}: ew=8/16/32 - sets elwidth override
• sw={N}: sw=8/16/32 - sets source elwidth override
• ff={xx}: see fail-first mode
• sat{x}: satu / sats - see saturation mode
• mr: see map-reduce mode
• mrr: map-reduce, reverse-gear (VL-1 downto 0)
• mr.svm see map-reduce with sub-vector mode
• crm: see map-reduce CR mode
• crm.svm see map-reduce CR with sub-vector mode
• sz: predication with source-zeroing
• dz: predication with dest-zeroing

For modes:

• fail-first
• ff=lt/gt/le/ge/eq/ne/so/ns
• RC1 mode
• saturation:
• sats
• satu
• map-reduce:
• mr OR crm: “normal” map-reduce mode or CR-mode.
• mr.svm OR crm.svm: when vec2/3/4 set, sub-vector mapreduce is enabled

https://bugs.libre-soc.org/show_bug.cgi?id=552

APPENDIX A. SVP64 APPENDIX 185

A.1.13 Parallel-reduction algorithm

The principle of SVP64 is that SVP64 is a fully-independent Abstraction of hardware-looping in between
issue and execute phases that has no relation to the operation it issues. Additional state cannot be saved on
context-switching beyond that of SVSTATE, making things slightly tricky.

Executable demo pseudocode, full version here

def preduce_yield(vl, vec, pred):
step = 1
ix = list(range(vl))
while step < vl:

step *= 2
for i in range(0, vl, step):

other = i + step // 2
ci = ix[i]
oi = ix[other] if other < vl else None
other_pred = other < vl and pred[oi]
if pred[ci] and other_pred:

yield ci, oi
elif other_pred:

ix[i] = oi

def preduce_y(vl, vec, pred):
for i, other in preduce_yield(vl, vec, pred):

vec[i] += vec[other]

This algorithm works by noting when data remains in-place rather than being reduced, and referring to that
alternative position on subsequent layers of reduction. It is re-entrant. If however interrupted and restored, some
implementations may take longer to re-establish the context.

Its application by default is that:

• RA, FRA or BFA is the first register as the first operand (ci index offset in the above pseudocode)
• RB, FRB or BFB is the second (co index offset)
• RT (result) also uses ci if RA==RT

For more complex applications a REMAP Schedule must be used

Programmers’s note: if passed a predicate mask with only one bit set, this algorithm takes no action, similar to
when a predicate mask is all zero.

Implementor’s Note: many SIMD-based Parallel Reduction Algorithms are implemented in hardware with MVs
that ensure lane-crossing is minimised. The mistake which would be catastrophic to SVP64 to make is to then
limit the Reduction Sequence for all implementors based solely and exclusively on what one specific internal
microarchitecture does. In SIMD ISAs the internal SIMD Architectural design is exposed and imposed on the
programmer. Cray-style Vector ISAs on the other hand provide convenient, compact and efficient encodings
of abstract concepts. It is the Implementor’s responsibility to produce a design that complies with
the above algorithm, utilising internal Micro-coding and other techniques to transparently insert
micro-architectural lane-crossing Move operations if necessary or desired, to give the level of
efficiency or performance required.

A.1.14 Element-width overrides </>

Element-width overrides are best illustrated with a packed structure union in the c programming language. The
following should be taken literally, and assume always a little-endian layout:

#pragma pack
typedef union {

https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/test_preduce.py;hb=HEAD

APPENDIX A. SVP64 APPENDIX 186

uint8_t b[];
uint16_t s[];
uint32_t i[];
uint64_t l[];
uint8_t actual_bytes[8];

} el_reg_t;

elreg_t int_regfile[128];

Accessing (get and set) of registers given a value, register (in elreg_t form), and that all arithmetic, numbering
and pseudo-Memory format is LE-endian and LSB0-numbered below:

elreg_t& get_polymorphed_reg(elreg_t const& reg, bitwidth, offset):
el_reg_t res; // result
res.l = 0; // TODO: going to need sign-extending / zero-extending
if !reg.isvec: // scalar access has no element offset

offset = 0
if bitwidth == 8:

reg.b = int_regfile[reg].b[offset]
elif bitwidth == 16:

reg.s = int_regfile[reg].s[offset]
elif bitwidth == 32:

reg.i = int_regfile[reg].i[offset]
elif bitwidth == 64:

reg.l = int_regfile[reg].l[offset]
return reg

set_polymorphed_reg(elreg_t& reg, bitwidth, offset, val):
if (!reg.isvec):

for safety mask out hi bits
bytemask = (8 << bitwidth) - 1
val &= bytemask
not a vector: first element only, overwrites high bits.
and with the *Architectural* definition being LE,
storing in the first DWORD works perfectly.
int_regfile[reg].l[0] = val

elif bitwidth == 8:
int_regfile[reg].b[offset] = val

elif bitwidth == 16:
int_regfile[reg].s[offset] = val

elif bitwidth == 32:
int_regfile[reg].i[offset] = val

elif bitwidth == 64:
int_regfile[reg].l[offset] = val

In effect the GPR registers r0 to r127 (and corresponding FPRs fp0 to fp127) are reinterpreted to be “starting
points” in a byte-addressable memory. Vectors - which become just a virtual naming construct - effectively
overlap.

It is extremely important for implementors to note that the only circumstance where upper portions of an
underlying 64-bit register are zero’d out is when the destination is a scalar. The ideal register file has byte-level
write-enable lines, just like most SRAMs, in order to avoid READ-MODIFY-WRITE.

An example ADD operation with predication and element width overrides:

for (i = 0; i < VL; i++)
if (predval & 1<<i) # predication

src1 = get_polymorphed_reg(RA, srcwid, irs1)

APPENDIX A. SVP64 APPENDIX 187

src2 = get_polymorphed_reg(RB, srcwid, irs2)
result = src1 + src2 # actual add here
set_polymorphed_reg(RT, destwid, ird, result)
if (!RT.isvec) break

if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }
if (RB.isvec) { irs2 += 1; }

Thus it can be clearly seen that elements are packed by their element width, and the packing starts from the
source (or destination) specified by the instruction.

A.1.15 Twin (implicit) result operations

Some operations in the Power ISA already target two 64-bit scalar registers: lq for example, and LD with
update. Some mathematical algorithms are more efficient when there are two outputs rather than one, providing
feedback loops between elements (the most well-known being add with carry). 64-bit multiply for example
actually internally produces a 128 bit result, which clearly cannot be stored in a single 64 bit register. Some ISAs
recommend “macro op fusion”: the practice of setting a convention whereby if two commonly used instructions
(mullo, mulhi) use the same ALU but one selects the low part of an identical operation and the other selects the
high part, then optimised micro-architectures may “fuse” those two instructions together, using Micro-coding
techniques, internally.

The practice and convention of macro-op fusion however is not compatible with SVP64 Horizontal-First, because
Horizontal Mode may only be applied to a single instruction at a time, and SVP64 is based on the principle of
strict Program Order even at the element level. Thus it becomes necessary to add explicit more complex single
instructions with more operands than would normally be seen in the average RISC ISA (3-in, 2-out, in some
cases). If it was not for Power ISA already having LD/ST with update as well as Condition Codes and lq this
would be hard to justify.

With limited space in the EXTRA Field, and Power ISA opcodes being only 32 bit, 5 operands is quite an ask. lq
however sets a precedent: RTp stands for “RT pair”. In other words the result is stored in RT and RT+1. For
Scalar operations, following this precedent is perfectly reasonable. In Scalar mode, maddedu therefore stores the
two halves of the 128-bit multiply into RT and RT+1.

What, then, of sv.maddedu? If the destination is hard-coded to RT and RT+1 the instruction is not useful
when Vectorised because the output will be overwritten on the next element. To solve this is easy: define the
destination registers as RT and RT+MAXVL respectively. This makes it easy for compilers to statically allocate
registers even when VL changes dynamically.

Bear in mind that both RT and RT+MAXVL are starting points for Vectors, and bear in mind that element-width
overrides still have to be taken into consideration, the starting point for the implicit destination is best illustrated
in pseudocode:

demo of maddedu
for (i = 0; i < VL; i++)

if (predval & 1<<i) # predication
src1 = get_polymorphed_reg(RA, srcwid, irs1)
src2 = get_polymorphed_reg(RB, srcwid, irs2)
src2 = get_polymorphed_reg(RC, srcwid, irs3)
result = src1*src2 + src2
destmask = (2<<destwid)-1
store two halves of result, both start from RT.
set_polymorphed_reg(RT, destwid, ird , result&destmask)
set_polymorphed_reg(RT, destwid, ird+MAXVL, result>>destwid)
if (!RT.isvec) break

if (RT.isvec) { id += 1; }
if (RA.isvec) { irs1 += 1; }

APPENDIX A. SVP64 APPENDIX 188

if (RB.isvec) { irs2 += 1; }
if (RC.isvec) { irs3 += 1; }

The significant part here is that the second half is stored starting not from RT+MAXVL at all: it is the element
index that is offset by MAXVL, both halves actually starting from RT. If VL is 3, MAXVL is 5, RT is 1, and
dest elwidth is 32 then the elements RT0 to RT2 are stored:

LSB0: 63:32 31:0
MSB0: 0:31 32:63
r0 unchanged unchanged
r1 RT1.lo RT0.lo
r2 unchanged RT2.lo
r3 RT0.hi unchanged
r4 RT2.hi RT1.hi
r5 unchanged unchanged

Note that all of the LO halves start from r1, but that the HI halves start from half-way into r3. The reason is
that with MAXVL bring 5 and elwidth being 32, this is the 5th element offset (in 32 bit quantities) counting
from r1.

Programmer’s note: accessing registers that have been placed starting on a non-contiguous boundary (half-way
along a scalar register) can be inconvenient: REMAP can provide an offset but it requires extra instructions
to set up. A simple solution is to ensure that MAXVL is rounded up such that the Vector ends cleanly on a
contiguous register boundary. MAXVL=6 in the above example would achieve that

Additional DRAFT Scalar instructions in 3-in 2-out form with an implicit 2nd destination:

• {Fixed Point pseudocode}
• {Floating Point pseudocode}

[[!tag standards]]

Appendix B

SVP64 Quirks

B.1 The Rules

[[!toc]]

SVP64 is designed around fundamental and inviolate RISC principles. This gives a uniformity and regularity to
the ISA, making implementation straightforward, which was why RISC as a concept became popular.

1. There are no actual Vector instructions: Scalar instructions are the sole exclusive bedrock.
2. No scalar instruction ever deviates in its encoding or meaning just because it is prefixed (semantic caveats

below)
3. A hardware-level for-loop (the prefix) makes vector elements 100% synonymous with scalar instructions

(the suffix)
4. Exactly as with Scalar RISC ISAs, the uniformity does produce “holes” in the encoding or some strange

combinations.

How can a Vector ISA even exist when no actual Vector instructions are permitted to be added? It comes down
to the strict RISC abstraction. First you start from a scalar instruction (32-bit). Second, the Prefixing is
applied in the abstract to give the appearance and ultimately the same effect as if an explicit Vector instruction
had also been added. Looking at the pseudocode of any Vector ISA (RVV, NEC SX Aurora, Cray) they always
comprise (a) a for-loop around (b) element-based operations. It is perfectly reasonable and rational to separate
(a) from (b) then find a powerful pre-existing Supercomputing-class ISA that qualifies for (b).

There are a few exceptional places where these rules get bent, and others where the rules take some explaining,
and this page tracks them all.

The modification caveat in (2) above semantically exempts element width overrides, which still do not actually
modify the meaning of the instruction: an add remains an add, even if its override makes it an 8-bit add rather
than a 64-bit add. Even add-with-carry remains an add-with-carry: it’s just that when elwidth=8 in the Prefix
it’s an 8-bit add-with-carry where the 9th bit becomes Carry-out (not the 65th bit). In other words, elwidth
overrides definitely do not fundamentally alter the actual Scalar v3.0 ISA encoding itself. Consequently we can
still, in the strictest semantic sense, not be breaking rule (2).

Likewise, other “modifications” such as saturation or Data-dependent Fail-First likewise are actually post-
augmentation or post-analysis, and do not fundamentally change an add operation into a subtract for example,
and under absolutely no circumstances do the actual 32-bit Scalar v3.0 operand field bits change or the number
of operands change.

In an early Draft of SVP64, an experiment was attempted, to modify LD-immediate instructions to include
a third RC register i.e. reinterpret the normal v3.0 32-bit instruction as a completely different encoding if
SVP64-prefixed. It did not go well. The complexity that resulted in the decode phase was too great. The lesson
was learned, the hard way: it would be infinitely preferable to add a 32-bit Scalar Load-with-Shift instruction

189

APPENDIX B. SVP64 QUIRKS 190

first, which then inherently becomes Vectorised. Perhaps a future Power ISA spec will have this Load-with-Shift
instruction: both ARM and x86 have it, because it saves greatly on instruction count in hot-loops.

The other reason for not adding an SVP64-Prefixed instruction without also having it as a Scalar un-prefixed
instruction is that if the 32-bit encoding is ever allocated in a future revision of the Power ISA to a completely
unrelated operation then how can a Vectorised version of that new instruction ever be added? The uniformity
and RISC Abstraction is irreparably damaged. Bottom line here is that the fundamental RISC Principle is
strictly adhered to, even though these are Advanced 64-bit Vector instructions. Advocates of the RISC Principle
will appreciate the uniformity of SVP64 and the level of systematic abstraction kept between Prefix and Suffix.

B.2 Instruction Groups

The basic principle of SVP64 is the prefix, which contains mode as well as register augmentation and predicates.
When thinking of instructions and Vectorising them, it is natural for arithmetic operations (ADD, OR) to be
the first to spring to mind. Arithmetic instructions have registers, therefore augmentation applies, end of story,
right?

Except, Load and Store deals also with Memory, not just registers. Power ISA has Condition Register Fields:
how can element widths apply there? And branches: how can you have Saturation on something that does not
return an arithmetic result? In short: there are actually four different categories (five including those for which
Vectorisation makes no sense at all, such as sc or mtmsr). The categories are:

• arithmetic/logical including floating-point
• Load/Store
• Condition Register Field operations
• branch

Arithmetic

Arithmetic (known as “normal” mode) is where Scalar and Parallel Reduction can be done: Saturation as well,
and a new innovative modes for Vector ISAs: data-dependent fail-first. Reduction and Saturation are common
to see in Vector ISAs: it is just that they are usually added as explicit instructions, and NEC SX Aurora has
even more iterative instructions. In SVP64 these concepts are applied in the abstract general form, which takes
some getting used to.

Reduction may, when applied to non-commutative instructions incorrectly, result in invalid results, but ultimately
it is critical to think in terms of the “rules”, that everything is Scalar instructions in strict Program Order.
Reduction on non-commutative Scalar Operations is not prohibited: the strict Program Order allows the
programmer to think through what would happen and thus potentially actually come up with legitimate use.

Branches

Branch is the one and only place where the Scalar (non-prefixed) operations differ from the Vector (element)
instructions (as explained in a separate section) although a case could be made for the perspective that they
are identical, but the defaults for new parameters in the Scalar case makes branch identical to Power ISA v3.1
Scalar branches.

The RM bits can be used for other purposes because the Arithmetic modes make no sense at all for a Branch.
Almost the entire SVP64 RM Field is interpreted differently from other Modes, in order to support a wide range
of parallel boolean condition options which are expected of a Vector / GPU ISA. These save a considerable
number of instructions in tight inner loop situations.

CR Field Ops

Condition Register Fields are 4-bit wide and consequently element-width overrides make absolutely no sense
whatsoever. Therefore the elwidth override field bits can be used for other purposes when Vectorising CR Field
instructions. Moreover, Rc=1 is completely invalid for CR operations such as crand: Rc=1 is for arithmetic
operations, producing a “co-result” that goes into CR0 or CR1. Thus, Saturation makes no sense. All of these

APPENDIX B. SVP64 QUIRKS 191

differences, which require quite a lot of logical reasoning and deduction, help explain why there is an entirely
different CR ops Vectorisation Category.

A particularly strange quirk of CR-based Vector Operations is that the Scalar Power ISA CR Register is 32-bits,
but actually comprises eight CR Fields, CR0-CR7. With each CR Field being four bits (EQ, LT, GT, SO) this
makes up 32 bits, and therefore a CR operand referring to one bit of the CR will be 5 bits in length (BA, BT).
However, some instructions refer to a CR Field (CR0-CR7) and consequently these operands (BF, BFA etc) are
only 3-bits.

(It helps here to think of the top 3 bits of BA as referring to a CR Field, like BFA does, and the bottom 2 bits of
BA referring to EQ/LT/GT/SO within that Field)

With SVP64 extending the number of CR Fields to 128, the number of 32-bit CR Registers extends to 16,
in order to hold all 128 CR Fields (8 per CR Register). Then, it gets even more strange, when it comes to
Vectorisation, which applies to the CR Field numbers. The hardware-for-loop for Rc=1 for example starts at
CR0 for element 0, and moves to CR1 for element 1, and so on. The reason here is quite simple: each element
result has to have its own CR Field co-result.

In other words, the element is the 4-bit CR Field, not the bits of the 32-bit CR Register, and not the CR
Register (of which there are now 16). All quite logical, but a little mind-bending.

Load/Store

LOAD/STORE is another area that has different needs: this time it is down to limitations in Scalar LD/ST.
Vector ISAs have Load/Store modes which simply make no sense in a RISC Scalar ISA: element-stride and
unit-stride and the entire concept of a stride itself (a spacing between elements) has no place at all in a Scalar ISA.
The problems come when trying to retrofit the concept of “Vector Elements” onto a Scalar ISA. Consequently it
required a couple of bits (Modes) in the SVP64 RM Prefix to convey the stride mode, changing the Effective
Address computation as a result. Interestingly, worth noting for Hardware designers: it did turn out to be
possible to perform pre-multiplication of the D/DS Immediate by the stride amount, making it possible to avoid
actually modifying the LD/ST Pipeline itself.

Other areas where LD/ST went quirky: element-width overrides especially when combined with Saturation,
given that LD/ST operations have byte, halfword, word, dword and quad variants. The interaction between
these widths as part of the actual operation, and the source and destination elwidth overrides, was particularly
obtuse and hard to derive: some care and attention is advised, here, when reading the specification, especially
on arithmetic loads (lbarx, lharx etc.)

Non-vectorised

The concept of a Vectorised halt (attn) makes no sense. There are never going to be a Vector of global MSRs
(Machine Status Register). mtcr on the other hand is a grey area: mtspr is clearly Vectoriseable. Even td and
tdi makes a strange type of sense to permit it to be Vectorised, because a sequence of comparisons could be
Vectorised. Vectorised System Calls (sc) or tlbie and other Cache or Virtual Nemory Management instructions,
these make no sense to Vectorise.

However, it is really quite important to not be tempted to conclude that just because these instructions are
un-vectoriseable, the Prefix opcode space must be free for reiterpretation and use for other purposes. This would
be a serious mistake because a future revision of the specification might retire the Scalar instruction, and, worse,
replace it with another. Again this comes down to being quite strict about the rules: only Scalar instructions get
Vectorised: there are no actual explicit Vector instructions.

Summary

Where a traditional Vector ISA effectively duplicates the entirety of a Scalar ISA and then adds additional
instructions which only make sense in a Vector Context, such as Vector Shuffle, SVP64 goes to considerable
lengths to keep strictly to augmentation and embedding of an entire Scalar ISA’s instructions into an abstract
Vectorisation Context. That abstraction subdivides down into Categories appropriate for the type of operation
(Branch, CRs, Memory, Arithmetic), and each Category has its own relevant but ultimately rational quirks.

APPENDIX B. SVP64 QUIRKS 192

B.3 Abstraction between Prefix and Suffix

In the introduction paragraph, a great fuss was made emphasising that the Prefix is kept separate from the
Suffix. The whole idea there is that a Multi-issue Decoder and subsequent pipelines would in no way have
“back-propagation” of state that can only be determined far too late. This has been preserved, however there is a
hiccup.

Examining the Power ISA 3.1 a 64-bit Prefix was introduced, EXT001. The encoding of the prefix has 6 bits
that are dedicated to letting the hardware know what the remainder of the Prefix bits mean: how they are
formatted, even without having to examine the Suffix to which they are applied.

SVP64 has such pressure on its 24-bit encoding that it was simply not possible to perform the same trick used
by Power ISA 3.1 Prefixing. Therefore, rather unfortunately, it becomes necessary to perform a partial decoding
of the v3.0 Suffix before the 24-bit SVP64 RM Fields may be identified. Fortunately this is straightforward, and
does not rely on any outside state, and even more fortunately for a Multi-Issue Execution decoder, the length
32/64 is also easy to identify by looking for the EXT001 pattern. Once identified the 32/64 bits may be passed
independently to multiple Decoders in parallel.

B.4 Predication

Predication is entirely missing from the Power ISA. Adding it would be a costly mistake because it cannot be
retrofitted to an ISA without literally duplicating all instructions. Prefixing is about the only sane way to go.

CR Fields as predicate masks could be spread across multiple register file entries, making them costly to read in
one hit. Therefore the possibility exists that an instruction element writing to a CR Field could overwrite the
Predicate mask CR Vector during the middle of a for-loop.

Clearly this is bad, so don’t do it. If there are potential issues they can be avoided by using the crweird
instructions to get CR Field bits into an Integer GPR (r3, r10 or r30) and use that GPR as a Predicate mask
instead.

Even in Vertical-First Mode, which is a single Scalar instruction executed with “offset” registers (in effect), the
rule still applies: don’t write to the same register being used as the predicate, it’s UNDEFINED behaviour.

B.4.1 Single Predication

So named because there is a Twin Predication concept as well, Single Predication is also unlike other Vector
ISAs because it allows zeroing on both the source and destination. This takes some explaining.

In Vector ISAs, there is a Predicate Mask, it applies to the destination only, and there is a choice of actions
when a Predicate Mask bit is zero:

• set the destination element to zero
• skip that element operation entirely, leaving the destination unmodified

The problem comes if the underlying register file SRAM is say 64-bit wide write granularity but the Vector
elements are say 8-bit wide. Some Vector ISAs strongly advocate Zeroing because to leave one single element at a
small bitwidth in amongst other elements where the register file does not have the prerequisite access granularity
is very expensive, requiring a Read-Modify-Write cycle to preserve the untouched elements. Putting zero into
the destination avoids that Read.

This is technically very easy to solve: use a Register File that does in fact have the smallest element-level
write-enable granularity. If the elements are 8 bit then allow 8-bit writes!

With that technical issue solved there is nothing in the way of choosing to support both zeroing and non-zeroing
(skipping) at the ISA level: SV chooses to further support both on both the source and destination. This can

APPENDIX B. SVP64 QUIRKS 193

result in the source and destination element indices getting “out-of-sync” even though the Predicate Mask is the
same because the behaviour is different when zeros in the Predicate are encountered.

B.4.2 Twin Predication

Twin Predication is an entirely new concept not present in any commercial Vector ISA of the past forty years.
To explain how normal Single-predication is applied in a standard Vector ISA:

• Predication on the source of a LOAD instruction creates something called “Vector Compressed Load”
(VCOMPRESS).

• Predication on the destination of a STORE instruction creates something called “Vector Expanded Store”
(VEXPAND).

• SVP64 allows the two to be put back-to-back: one on source, one on destination.

The above allows a reader familiar with VCOMPRESS and VEXPAND to conceptualise what the effect of Twin
Predication is, but it actually goes much further: in any twin-predicated instruction (extsw, fmv) it is possible
to apply one predicate to the source register (compressing the source element array) and another completely
separate predicate to the destination register, not just on Load/Stores but on arithmetic operations.

No other Vector ISA in the world has this back-to-back capability. All true Vector ISAs have Predicate Masks: it
is an absolutely essential characteristic. However none of them have abstracted dual predicates out to the extent
where this VCOMPRESS-VEXPAND effect is applicable in general to a wide range of arithmetic instructions,
as well as Load/Store.

It is however important to note that not all instructions can be Twin Predicated (2P): some remain only Single
Predicated (1P), as is normally found in other Vector ISAs. Arithmetic operations with four registers (3-in,
1-out, VA-Form for example) are Single. The reason is that there just wasn’t enough space in the 24-bits of
the SVP64 Prefix. Consequently, when using a given instruction, it is necessary to look up in the ISA Tables
whether it is 1P or 2P. caveat emptor!

Also worth a special mention: all Load/Store operations are Twin-Predicated. The underlying key to under-
standing:

• one Predicate effectively applies to the Array of Memory Addresses,
• the other Predicate effectively applies to the Array of Memory Data.

B.5 CR weird instructions

{CR Weird ops} is by far the biggest violator of the SVP64 rules, for good reasons. Transfers between Vectors of
CR Fields and Integers for use as predicates is very awkward without them.

Normally, element width overrides allow the element width to be specified as 8, 16, 32 or default (64) bit. With
CR weird instructions producing or consuming either 1 bit or 4 bit elements (in effect) some adaptation was
required. When this perspective is taken (that results or sources are 1 or 4 bits) the weirdness starts to make
sense, because the “elements”, such as they are, are still packed sequentially.

From a hardware implementation perspective however they will need special handling as far as Hazard Depen-
dencies are concerned, due to nonconformance (bit-level management)

B.6 mv.x (vector permute)

[[sv/mv.x]] aka GPR(RT) = GPR(GPR(RA)) is so horrendous in terms of Register Hazard Management that its
addition to any Scalar ISA is anathematic. In a Traditional Vector ISA however, where the indices are isolated
behind a single Vector Hazard, there is no problem at all. sv.mv.x is also fraught, precisely because it sits on
top of a Standard Scalar register paradigm, not a Vector ISA with separate and distinct Vector registers.

APPENDIX B. SVP64 QUIRKS 194

To help partly solve this, sv.mv.x would have had to have been made relative:

for i in range(VL):
GPR(RT+i) = GPR(RT+MIN(GPR(RA+i), VL))

The reason for doing so is that MAXVL or VL may be used to limit the number of Register Hazards that need
to be raised to a fixed quantity, at Issue time.

mv.x itself would still have to be added as a Scalar instruction, but the behaviour of sv.mv.x would have to be
different from that Scalar version.

Normally, Scalar Instructions have a good justification for being added as Scalar instructions on their own merit.
mv.x is the polar opposite, and in the end, the idea was thrown out, and Indexed REMAP added in its place.
Indexed REMAP comes with its own quirks, solving the Hazard problem, described in a later section.

B.7 REMAP and other reordering

There are several places in Simple-V which apply some sort of reordering schedule to elements. srcstep and
dststep do not themselves reorder: they continue to march in sequence (VL-1 downto 0 in the case of reverse-gear)

It is perfectly legal to apply Parallel-Reduction on top of any type of REMAP, for example, and it is possible to
apply Pack/Unpack on a REMAP as well.

The order of application of REMAP combined with Parallel-Reduction should be logically obvious: REMAP has
to come first because otherwise how can the Parallel-Reduction perform a tree-walk?

Pack/Unpack on the other hand is best implemented as applying first, because it is applied as the inversion of
the for-loops which generate the steps and substeps. REMAP then applies to the src/dst-step indices (never to
the subvl step indices: that is SWIZZLE’s job).

It’s all perfectly logical, just a lot going on.

B.8 Branch-Conditional

{Branch Mode} are a very special exception to the rule that there shall be no deviation from the corresponding
Scalar instruction. This because of the tight integration with looping and the application of Boolean Logic
manipulation needed for Parallel operations (predicate mask usage). This results in an extremely important
observation that scalar identity behaviour is violated: the SV Prefixed variant of branch is not the same
operation as the unprefixed 32-bit scalar version.

One key difference is that LR is only updated if certain additional conditions are met, whereas Scalar bclrl for
example unconditionally overwrites LR.

Another is that the Vectorised Branch-Conditional instructions are the only ones where there are side-effects on
predication when skipping is enabled. This is so as to be able to use CTR to count down masked-out elements.

Well over 500 Vectorised branch instructions exist in SVP64 due to the number of options available: close
integration and interaction with the base Scalar Branch was unavoidable in order to create Conditional Branching
suitable for parallel 3D / CUDA GPU workloads.

B.9 Saturation

The application of Saturation as a retro-fit to a Scalar ISA is challenging. It does help that within the SFFS
Compliancy subset there are no Saturated operations at all: they are only added in VSX.

APPENDIX B. SVP64 QUIRKS 195

Saturation does not inherently change the instruction itself: it does however come with some fundamental
implications, when applied. For example: a Floating-Point operation that would normally raise an exception will
no longer do so, instead setting the CR1.SO Flag. Another quirky example: signed operations which produce a
negative result will be truncated to zero if Unsigned Saturation is requested.

One very important aspect for implementors is that the operation in effect has to be considered to be performed
at infinite precision, followed by saturation detection. In practice this does not actually require infinite precision
hardware! Two 8-bit integers being added can only ever overflow into a 9-bit result.

Overall some care and consideration needs to be applied.

B.10 Fail-First

Fail-First (both the Load/Store and Data-Dependent variants) is worthy of a special mention in its own right.
Where VL is normally forward-looking and may be part of a pre-decode phase in a (simplified) pipelined
architecture with no Read-after-Write Hazards, Fail-First changes that because at any point during the execution
of the element-level instructions, one of those elements may not only terminate further continuation of the
hardware-for-looping but also effect a change of VL:

for i in range(VL):
result = element_operation(GPR(RA+i), GPR(RB+i))
if test(result):

VL = i
break

This is not exactly a violation of SVP64 Rules, more of a breakage of user expectations, particularly for LD/ST
where exceptions would normally be expected to be raised, Fail-First provides for avoidance of those exceptions.

For Hardware implementers, a standard Out-of-Order micro-architecture allows for Cancellation of speculatively-
executed elements that extended beyond the Vector Truncation point. In-order systems will have a slightly
harder time and may choose to execute one element only at a time, reducing performance as a result.

B.11 OE=1

The hardware cost of Sticky Overflow in a parallel environment is immense. The SFFS Compliancy Level is
permitted optionally to support XER.SO. Therefore the decision is made to make it mandatory not to support
XER.SO. However, CR.SO is supported such that when Rc=1 is set the CR.SO flag will contain only the overflow
of the current instruction, rather than being actually “sticky”. Hardware Out-of-Order designers will recognise
and appreciate that the Hazards are reduced to Read-After-Write (RAW) and that the WAR Hazard is removed.

This is sort-of a quirk and sort-of not, because the option to support XER.SO is already optional from the SFFS
Compliancy Level.

B.12 Indexed REMAP and CR Field Predication Hazards

Normal Vector ISAs and those Packed SIMD ISAs inspired by them have Vector “Permute” or “Shuffle”
instructions. These provide a Vector of indices whereby another Vector is reordered (permuted, shuffled)
according to the indices. Register Hazard Managent here is trivial because there are three registers: indices
source vector, elements source vector to be shuffled, result vector.

For SVP64 which is based on top of a Scalar Register File paradigm, combined with the hard requirement
to respect full Register Hazard Management as if element instructions were actual Scalar instructions, the
addition of a Vector permute instruction under these strict conditions would result in a catastrophic reduction in
performance, due to having to consider Read-after-Write and Write-after-Read Hazards at the element level.

APPENDIX B. SVP64 QUIRKS 196

A little leniency and rule-bending is therefore required.

Rather than add explicit Vector permute instructions, the “Indexing” has been separated out into a REMAP
Schedule. When an Indexed REMAP is requested, it is assumed (required, of software) that subsequent
instructions intending to use those indices will not attempt to modify the indices. It is Software that must
consider them to be read-only.

This simple relaxation of the rules releases Hardware from having the horrendous job of dynamically detecting
Write-after-Read Hazards on a huge range of registers.

A similar Hazard problem exists for CR Field Predicates, in Vertical-First Mode. Instructions could modify CR
Fields currently being used as Predicate Masks: detecting this is so horrendous for hardware resource utilisation
and hardware complexity that, again, the decision is made to relax these constraints and for Software to take
that into account.

B.13 Floating-Point “Single” becomes “Half”

In several places in the Power ISA there are operations that are on 32-bit quantities in 64-bit registers. The
best example is FP which has 64-bit operations (fadd) and 32-bit operations (fadds or FP Add “single”).
Element-width overrides it would seem to be unnecessary, under these circumstances.

However, it is not possible for fadds to fit two elements into 64-bit: that breaks the simplicity of SVP64. Bear
in mind that the FP32 bits are spread out across a 64 bit register in FP64 format. The solution here was to
consider the “s” at the end of each instruction to mean “half of the element’s width”. Thus, sv.fadds/ew=32
actually stores an FP16 spread out across the 32 bits of an element, in FP32 format, where sv.fadd/ew=32
stores a full FP32 result into the full 32 bits.

Where this breaks down is when attempting to do half-width on BF16 or FP16 operations: there does not exist
a BF8 or an IEEE754 FP8 format, so these (sv.fadds/ew=8) should be avoided.

B.14 Word frequently becomes “half”

Again, related to “Single” becoming “half of element width”, unless there are compelling reasons the same trick
applies to Scalar GPR operations. With the pseudocode being “XLEN//2” then of course if XLEN=8 the
operation becomes a 4-bit one.

Similarly byte operations which use “XLEN//8” when XLEN=8 actually become single-bit operations, which is
very useful with sv.extsb/w=8 for example. This instruction copies the LSB of each byte in a sequence of bytes,
and expands it to all 8 bits in each result byte.

B.15 Vertical-First and Subvectors

Documented in the {setvl instruction} page, Vertical-First goes through elements second instructions first and
requires an explicit {svstep instruction} instruction to move to the next element, (whereas Horizontal-First loops
through elements in full first before moving on to the next instruction): Subvectors are considered “elements” in
Vertical-First Mode.

This is conceptually quite easy to keep in mind that a Vertical-First instruction does one element at a time, and
when SUBVL is set, that “element” in essence becomes a vec2/3/4.

APPENDIX B. SVP64 QUIRKS 197

B.16 Swizzle and Pack/Unpack

These are both so weird it’s best to just read the pages in full and pay attention: {Swizzle Move} and {Pack /
Unpack}. Swizzle Moves only engage with vec2/3/4, reordering the copying of the sub-vector elements (including
allowing repeats and skips) based on an immediate supplied by the instruction. The fun comes when Pack/Unpack
are enabled, and it is really important to be aware how the Arrays of vec2/3/4 become re-ordered and swizzled
at the same time.

Pack/Unpack started out as {Pack / Unpack} but became its own distinct Mode over time. The main thing to
keep in mind about Pack/Unpack is that it engages a swap of the ordering of the VL-SUBVL nested for-loops, in
exactly the same way that Matrix REMAP can do. When Pack or Unpack is enabled it is the SUBVL for-loop
that becomes outermost. A bit of thought shows that this is a 2D “Transpose” where Dimension X is VL and
Dimension Y is SUBVL. However both source and destination may be independently “Transposed”, which makes
no sense at all until the fact that Swizzle can have a different SUBVL is taken into account.

Basically Pack/Unpack covers everything that VSX vpkpx and other ops can do, and then some: Saturation
included, for arithmetic ops.

B.17 LD/ST with zero-immediate vs mapreduce mode

LD/ST operations with a zero immediate effectively means that on a Vector operation the element index to
offset the memory location is multiplied by zero. Thus, a sequence of LD operations will load from the exact
same address, and likewise STs to the exact same address.

Ordinarily this would make absolutely no sense whatsoever, except that Power ISA has cache-inhibited LD/STs
(Power ISA v.1, Book III, 1.6.1, p1033), for accessing memory-mapped peripherals and other crucial uses. Thus,
despite not being a mapreduce mode, zero-immediates cause multiple hits on the same element.

Mapreduce mode is not actually mapreduce at all: it is a relaxation of the normal rule where if the destination
is a Scalar the Vector for-looping is not terminated on first write to the destination. Instead, the developer
is expected to exploit the strict Program Order, make one of the sources the same as that Scalar destination,
effectively making that Scalar register an “Accumulator”, thus creating the appearance (effect) of Simple-V
having a mapreduce capability, when in fact it is more of an artefact.

LD/ST zero-immediate has similar quirky overwriting as the “mapreduce” mode, but actually requires the
registers to be Vectors. It is simply a mathematical artefact of multiplying by zero, which happens to be useful
for cache-inhibited operations.

B.18 Limited space in LD/ST Mode

As pointed out in the {Load/Store Mode} page there is limited space in only 5 mode bits to fully express all
potential modes of operation.

• LD/ST Immediate has no individual control over src/dest zeroing, whereas LD/ST Indexed does.
• Post-Increment is not possible with Saturation or Data-Dependent Fail-First
• Element-Strided LD/ST Indexed is not possible with Data-Dependent Fail-First.

Also, the LD/ST Indexed Mode can be element-strided (RB as a Scalar, times the element index), or, if that is
not enough, although potentially costly it is possible to use svstep to compute a Vector RB sequence of Indices,
then activate either sz or dz as required, as a workaround for LDST Immediate only having zz.

Simple-V is powerful but it cannot do everything! There is just not enough space and so some compromises had
to be made.

APPENDIX B. SVP64 QUIRKS 198

B.19 sv.mtcr on entire 64-bit Condition Register

Normally, CR operations are either bit-based (where the element numbering actually applies to the CR Field) or
field-based in which case the elements are still fields. The sv.mtcr and other instructions are actually full 64-bit
Condition Register operations and are therefore qualified as Normal/Arithmetic not CRops.

This is to save on both Vector Length (VL of 16 is sufficient) as well as complexity in the Hazard Management
when context-switching CR fields, as the entire batch of 128 CR Fields may be transferred to 8 GPRs with a VL
of 16 and elwidth overriding of 32. Truncation is sufficent, dropping the top 32 bits of the Condition Register(s)
which are always zero anyway.

B.20 Separate Scalar and Vector Condition Register files

As explained in the introduction {SVP64 Chapter} and {Condition Register Fields Mode} Scalar Power ISA
lacks “Conditional Execution” present in ARM Scalar ISA of several decades. When Vectorised the fact that
Rc=1 Vector results can immediately be used as a Predicate Mask back into the following instruction can result
in large latency unless “Vector Chaining” is used in the Micro-Architecture.

But that aside is not the main problem faced by the introduction of Simple-V to the Power ISA: it’s that the
existing implementations (IBM) don’t have “Conditional Execution” and to add it to their existing designs would
be too disruptive a first step.

A compromise is to wipe blank certain entries in the Register Dependency Matrices by prohibiting some operations
involving the two groups of CR Fields: those that fall into the existing Scalar 32-bit CR (fields CR0-CR7) and
those that fall into the newly-introduced CR Fields, CR8-CR127.

This will drive compiler writers nuts, and give assembler writers headaches, but it gives IBM the opportunity
to implement SVP64 without massive disruption. They can add an entirely new Vector CR register file, new
pipelines etc safe in the knowledge that existing Scalar HDL needs no modification.

Appendix C

REMAP algorithms

C.0.1 REMAP Matrix pseudocode

The algorithm below shows how REMAP works more clearly, and may be executed as a python program:

Finite State Machine version of the REMAP system. much more likely
to end up being actually used in actual hardware

up to three dimensions permitted
xdim = 3
ydim = 2
zdim = 1

VL = xdim * ydim * zdim # set total (can repeat, e.g. VL=x*y*z*4)

lims = [xdim, ydim, zdim]
idxs = [0,0,0] # starting indices
applydim = [1, 1] # apply lower dims
order = [1,0,2] # experiment with different permutations, here
offset = 0 # experiment with different offsetet, here
invxyz = [0,1,0] # inversion allowed

pre-prepare the index state: run for "offset" times before
actually starting. this algorithm can also be used for re-entrancy
if exceptions occur and a REMAP has to be started from where the
interrupt left off.
for idx in range(offset):

for i in range(3):
idxs[order[i]] = idxs[order[i]] + 1
if (idxs[order[i]] != lims[order[i]]):

break
idxs[order[i]] = 0

break_count = 0 # for pretty-printing

for idx in range(VL):
ix = [0] * 3
for i in range(3):

ix[i] = idxs[i]
if invxyz[i]:

199

APPENDIX C. REMAP ALGORITHMS 200

ix[i] = lims[i] - 1 - ix[i]
new_idx = ix[2]
if applydim[1]:

new_idx = new_idx * ydim + ix[1]
if applydim[0]:

new_idx = new_idx * xdim + ix[0]
print ("%d->%d" % (idx, new_idx)),
break_count += 1
if break_count == lims[order[0]]:

print ("")
break_count = 0

this is the exact same thing as the pre-preparation stage
above. step 1: count up to the limit of the current dimension
step 2: if limit reached, zero it, and allow the *next* dimension
to increment. repeat for 3 dimensions.
for i in range(3):

idxs[order[i]] = idxs[order[i]] + 1
if (idxs[order[i]] != lims[order[i]]):

break
idxs[order[i]] = 0

An easier-to-read version (using python iterators) is given in a later section of this Appendix.

Each element index from the for-loop 0..VL-1 is run through the above algorithm to work out the actual
element index, instead. Given that there are four possible SHAPE entries, up to four separate registers in any
given operation may be simultaneously remapped:

function op_add(RT, RA, RB) # add not VADD!
for (i=0,id=0,irs1=0,irs2=0; i < VL; i++)
SVSTATE.srcstep = i # save context
if (predval & 1<<i) # predication mask

GPR[RT+remap1(id)] <= GPR[RA+remap2(irs1)] +
GPR[RB+remap3(irs2)];

if (!RT.isvector) break;
if (RT.isvector) { id += 1; }
if (RA.isvector) { irs1 += 1; }
if (RB.isvector) { irs2 += 1; }

By changing remappings, 2D matrices may be transposed “in-place” for one operation, followed by setting a
different permutation order without having to move the values in the registers to or from memory.

Note that:

• Over-running the register file clearly has to be detected and an illegal instruction exception thrown
• When non-default elwidths are set, the exact same algorithm still applies (i.e. it offsets polymorphic

elements within registers rather than entire registers).
• If permute option 000 is utilised, the actual order of the reindexing does not change. However, modulo

MVL still occurs which will result in repeated operations (use with caution).
• If two or more dimensions are set to zero, the actual order does not change!
• The above algorithm is pseudo-code only. Actual implementations will need to take into account the

fact that the element for-looping must be re-entrant, due to the possibility of exceptions occurring. See
SVSTATE SPR, which records the current element index. Continuing after return from an interrupt may
introduce latency due to re-computation of the remapped offsets.

• Twin-predicated operations require two separate and distinct element offsets. The above pseudo-code
algorithm will be applied separately and independently to each, should each of the two operands be
remapped. This even includes unit-strided LD/ST and other operations in that category, where in that case
it will be the address offset that is remapped: EA <- (RA) + immediate * REMAP(elementoffset).

• Offset is especially useful, on its own, for accessing elements within the middle of a register. Without offsets,

APPENDIX C. REMAP ALGORITHMS 201

it is necessary to either use a predicated MV, skipping the first elements, or performing a LOAD/STORE
cycle to memory. With offsets, the data does not have to be moved.

• Setting the total elements (xdim+1) times (ydim+1) times (zdim+1) to less than MVL is perfectly legal,
albeit very obscure. It permits entries to be regularly presented to operands more than once, thus
allowing the same underlying registers to act as an accumulator of multiple vector or matrix operations,
for example.

• Note especially that Program Order must still be respected even when overlaps occur that read or write
the same register elements including polymorphic ones

Clearly here some considerable care needs to be taken as the remapping could hypothetically create arithmetic
operations that target the exact same underlying registers, resulting in data corruption due to pipeline overlaps.
Out-of-order / Superscalar micro-architectures with register-renaming will have an easier time dealing with this
than DSP-style SIMD micro-architectures.

C.0.1.1 4x4 Matrix to vec4 Multiply (4x4 by 1x4)

The following settings will allow a 4x4 matrix (starting at f8), expressed as a sequence of 16 numbers first by
row then by column, to be multiplied by a vector of length 4 (starting at f0), using a single FMAC instruction.

• SHAPE0: xdim=4, ydim=4, permute=yx, applied to f0
• SHAPE1: xdim=4, ydim=1, permute=xy, applied to f4
• VL=16, f4=vec, f0=vec, f8=vec
• FMAC f4, f0, f8, f4

The permutation on SHAPE0 will use f0 as a vec4 source. On the first four iterations through the hardware
loop, the REMAPed index will not increment. On the second four, the index will increase by one. Likewise on
each subsequent group of four.

The permutation on SHAPE1 will increment f4 continuously cycling through f4-f7 every four iterations of the
hardware loop.

At the same time, VL will, because there is no SHAPE on f8, increment straight sequentially through the 16
values f8-f23 in the Matrix. The equivalent sequence thus is issued:

fmac f4, f0, f8, f4
fmac f5, f0, f9, f5
fmac f6, f0, f10, f6
fmac f7, f0, f11, f7
fmac f4, f1, f12, f4
fmac f5, f1, f13, f5
fmac f6, f1, f14, f6
fmac f7, f1, f15, f7
fmac f4, f2, f16, f4
fmac f5, f2, f17, f5
fmac f6, f2, f18, f6
fmac f7, f2, f19, f7
fmac f4, f3, f20, f4
fmac f5, f3, f21, f5
fmac f6, f3, f22, f6
fmac f7, f3, f23, f7

Hardware should easily pipeline the above FMACs and as long as each FMAC completes in 4 cycles or less there
should be 100% sustained throughput, from the one single Vector FMAC.

The only other instruction required is to ensure that f4-f7 are initialised (usually to zero) however obviously if
used as part of some other computation, which is frequently the case, then clearly the zeroing is not needed.

APPENDIX C. REMAP ALGORITHMS 202

C.0.2 REMAP FFT, DFT, NTT

The algorithm from a later section of this Appendix shows how FFT REMAP works, and it may be executed as
a standalone python3 program. The executable code is designed to illustrate how a hardware implementation
may generate Indices which are completely independent of the Execution of element-level operations, even for
something as complex as a Triple-loop Tukey-Cooley Schedule. A comprehensive demo and test suite may be
found here including Complex Number FFT which deploys Vertical-First Mode on top of the REMAP Schedules.

Other uses include more than DFT and NTT: as abstracted RISC-paradigm the Schedules are not restricted in
any way or tied to any particular instruction. If the programmer can find any algorithm which has identical
triple nesting then the FFT Schedule may be used even there.

C.0.3 svshape pseudocode

for convenience, VL to be calculated and stored in SVSTATE
vlen <- [0] * 7
mscale[0:5] <- 0b000001 # for scaling MAXVL
itercount[0:6] <- [0] * 7
SVSTATE[0:31] <- [0] * 32
only overwrite REMAP if "persistence" is zero
if (SVSTATE[62] = 0b0) then

SVSTATE[32:33] <- 0b00
SVSTATE[34:35] <- 0b00
SVSTATE[36:37] <- 0b00
SVSTATE[38:39] <- 0b00
SVSTATE[40:41] <- 0b00
SVSTATE[42:46] <- 0b00000
SVSTATE[62] <- 0b0
SVSTATE[63] <- 0b0

clear out all SVSHAPEs
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32

set schedule up for multiply
if (SVrm = 0b0000) then

VL in Matrix Multiply is xd*yd*zd
xd <- (0b00 || SVxd) + 1
yd <- (0b00 || SVyd) + 1
zd <- (0b00 || SVzd) + 1
n <- xd * yd * zd
vlen[0:6] <- n[14:20]
set up template in SVSHAPE0, then copy to 1-3
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[6:11] <- (0b0 || SVyd) # ydim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim
SVSHAPE0[28:29] <- 0b11 # skip z
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
SVSHAPE3[0:31] <- SVSHAPE0[0:31]
set up FRA
SVSHAPE1[18:20] <- 0b001 # permute x,z,y
SVSHAPE1[28:29] <- 0b01 # skip z

https://git.libre-soc.org/?p=openpower-isa.git;a=blob;f=src/openpower/decoder/isa/test_caller_svp64_fft.py;hb=HEAD

APPENDIX C. REMAP ALGORITHMS 203

FRC
SVSHAPE2[18:20] <- 0b001 # permute x,z,y
SVSHAPE2[28:29] <- 0b11 # skip y

set schedule up for FFT butterfly
if (SVrm = 0b0001) then

calculate O(N log2 N)
n <- [0] * 3
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
set up template in SVSHAPE0, then copy to 1-3
for FRA and FRT
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D FFT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # Butterfly mode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
set up FRB and FRS
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
FRC (coefficients)
SVSHAPE2[28:29] <- 0b10 # k schedule

set schedule up for (i)DCT Inner butterfly
SVrm Mode 4 (Mode 12 for iDCT) is for on-the-fly (Vertical-First Mode)
if ((SVrm = 0b0100) |

(SVrm = 0b1100)) then
calculate O(N log2 N)
n <- [0] * 3
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1100) then

SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Inner Butterfly sub-mode

else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b001 # DCT Inner Butterfly sub-mode
SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop

SVSHAPE0[6:11] <- 0b000011 # (i)DCT Inner Butterfly mode 4
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]

APPENDIX C. REMAP ALGORITHMS 204

SVSHAPE2[0:31] <- SVSHAPE0[0:31]
if (SVrm != 0b0100) & (SVrm != 0b1100) then

SVSHAPE3[0:31] <- SVSHAPE0[0:31]
for FRA and FRT
SVSHAPE0[28:29] <- 0b01 # j+halfstep schedule
for cos coefficient
SVSHAPE2[28:29] <- 0b10 # ci (k for mode 4) schedule
SVSHAPE2[12:17] <- 0b000000 # reset costable "striding" to 1
if (SVrm != 0b0100) & (SVrm != 0b1100) then

SVSHAPE3[28:29] <- 0b11 # size schedule

set schedule up for (i)DCT Outer butterfly
if (SVrm = 0b0011) | (SVrm = 0b1011) then

calculate O(N log2 N) number of outer butterfly overlapping adds
vlen[0:6] <- [0] * 7
n <- 0b000
size <- 0b0000001
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
itercount[0:6] <- (0b0 || itercount[0:5])
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
count <- (itercount - 0b0000001) * size
vlen[0:6] <- vlen + count[7:13]
size[0:6] <- (size[1:6] || 0b0)
itercount[0:6] <- (0b0 || itercount[0:5])

set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1011) then

SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Outer Butterfly sub-mode
SVSHAPE0[21:23] <- 0b101 # "inverse" on outer and inner loop

else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b100 # DCT Outer Butterfly sub-mode

SVSHAPE0[6:11] <- 0b000010 # DCT Butterfly mode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31] # j+halfstep schedule
SVSHAPE2[0:31] <- SVSHAPE0[0:31] # costable coefficients
for FRA and FRT
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
reset costable "striding" to 1
SVSHAPE2[12:17] <- 0b000000

set schedule up for DCT COS table generation
if (SVrm = 0b0101) | (SVrm = 0b1101) then

calculate O(N log2 N)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
itercount[0:6] <- (0b0 || itercount[0:5])
n <- [0] * 3

APPENDIX C. REMAP ALGORITHMS 205

do while n < 5
if SVxd[4-n] = 0 then

leave
n <- n + 1
vlen[0:6] <- vlen + itercount
itercount[0:6] <- (0b0 || itercount[0:5])

set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # DCT/FFT mode
SVSHAPE0[6:11] <- 0b000100 # DCT Inner Butterfly COS-gen mode
if (SVrm = 0b0101) then

SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop for DCT
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
for cos coefficient
SVSHAPE1[28:29] <- 0b10 # ci schedule
SVSHAPE2[28:29] <- 0b11 # size schedule

set schedule up for iDCT / DCT inverse of half-swapped ordering
if (SVrm = 0b0110) | (SVrm = 0b1110) | (SVrm = 0b1111) then

vlen[0:6] <- (0b00 || SVxd) + 0b0000001
set up template in SVSHAPE0
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1110) then

SVSHAPE0[18:20] <- 0b001 # DCT opposite half-swap
if (SVrm = 0b1111) then

SVSHAPE0[30:31] <- 0b01 # FFT mode
else

SVSHAPE0[30:31] <- 0b11 # DCT mode
SVSHAPE0[6:11] <- 0b000101 # DCT "half-swap" mode

set schedule up for parallel reduction
if (SVrm = 0b0111) then

calculate the total number of operations (brute-force)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
step[0:6] <- 0b0000001
i[0:6] <- 0b0000000
do while step <u itercount

newstep <- step[1:6] || 0b0
j[0:6] <- 0b0000000
do while (j+step <u itercount)

j <- j + newstep
i <- i + 1

step <- newstep
VL in Parallel-Reduce is the number of operations
vlen[0:6] <- i
set up template in SVSHAPE0, then copy to 1. only 2 needed
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim

APPENDIX C. REMAP ALGORITHMS 206

SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b10 # parallel reduce submode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
set up right operand (left operand 28:29 is zero)
SVSHAPE1[28:29] <- 0b01 # right operand

set VL, MVL and Vertical-First
m[0:12] <- vlen * mscale
maxvl[0:6] <- m[6:12]
SVSTATE[0:6] <- maxvl # MAVXL
SVSTATE[7:13] <- vlen # VL
SVSTATE[63] <- vf

C.0.4 svindex pseudocode

based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)

d <- d + 1

set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
if SVyx = 0 then

shape[18:20] <- 0b110 # indexed xd/yd
shape[0:5] <- (0b0 || SVd) # xdim
if sk = 0 then shape[6:11] <- 0 # ydim
else shape[6:11] <- 0b111111 # ydim max

else
shape[18:20] <- 0b111 # indexed yd/xd
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max
shape[0:5] <- (0b0 || SVd) # ydim

shape[12:17] <- (0b0 || SVG) # SVGPR
shape[28:29] <- ew # element-width override
shape[21] <- sk # skip 1st dimension

select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence
if mm = 0 then

clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
idx <- 0
for bit = 0 to 4

if rmm[4-bit] then

APPENDIX C. REMAP ALGORITHMS 207

activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1

else
refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1

C.0.5 svshape2 pseudocode

based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)

d <- d + 1
set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
shape[0:5] <- (0b0 || SVd) # x/ydim
if SVyx = 0 then

shape[18:20] <- 0b000 # ordering xd/yd(/zd)
if sk = 0 then shape[6:11] <- 0 # ydim
else shape[6:11] <- 0b111111 # ydim max

else
shape[18:20] <- 0b010 # ordering yd/xd(/zd)
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max

offset (the prime purpose of this instruction)
shape[24:27] <- SVo # offset
if sk = 1 then shape[28:29] <- 0b01 # skip 1st dimension
else shape[28:29] <- 0b00 # no skipping
select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence
if mm = 0 then

clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme

APPENDIX C. REMAP ALGORITHMS 208

idx <- 0
for bit = 0 to 4

if rmm[4-bit] then
activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1

else
refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1

[[!tag standards]]

Appendix D

Simple-V pseudocode

D.1 svstep

SVL-Form

• svstep RT,SVi,vf (Rc=0)
• svstep. RT,SVi,vf (Rc=1)

Pseudo-code:

if SVi[3:4] = 0b11 then
store pack and unpack in SVSTATE
SVSTATE[53] <- SVi[5]
SVSTATE[54] <- SVi[6]
RT <- [0]*62 || SVSTATE[53:54]

else
step <- SVSTATE_NEXT(SVi, vf)
RT <- [0]*57 || step

Special Registers Altered:

CR0 (if Rc=1)

D.2 setvl

SVL-Form

• setvl RT,RA,SVi,vf,vs,ms (Rc=0)
• setvl. RT,RA,SVi,vf,vs,ms (Rc=1)

Pseudo-code:

overflow <- 0b0
VLimm <- SVi + 1
set or get MVL
if ms = 1 then MVL <- VLimm[0:6]
else MVL <- SVSTATE[0:6]
set or get VL
if vs = 0 then VL <- SVSTATE[7:13]
else if _RA != 0 then

if (RA) >u 0b1111111 then

209

APPENDIX D. SIMPLE-V PSEUDOCODE 210

VL <- 0b1111111
overflow <- 0b1

else VL <- (RA)[57:63]
else if _RT = 0 then VL <- VLimm[0:6]
else if CTR >u 0b1111111 then

VL <- 0b1111111
overflow <- 0b1

else VL <- CTR[57:63]
limit VL to within MVL
if VL >u MVL then

overflow <- 0b1
VL <- MVL

SVSTATE[0:6] <- MVL
SVSTATE[7:13] <- VL
if _RT != 0 then

GPR(_RT) <- [0]*57 || VL
MAXVL is a static "state-reset".
if ms = 1 then

SVSTATE[63] <- vf # set Vertical-First mode
SVSTATE[62] <- 0b0 # clear persist bit

Special Registers Altered:

CR0 (if Rc=1)

D.3 svremap

SVRM-Form

• svremap SVme,mi0,mi1,mi2,mo0,mo1,pst

Pseudo-code:

registers RA RB RC RT EA/FRS SVSHAPE0-3 indices
SVSTATE[32:33] <- mi0
SVSTATE[34:35] <- mi1
SVSTATE[36:37] <- mi2
SVSTATE[38:39] <- mo0
SVSTATE[40:41] <- mo1
enable bit for RA RB RC RT EA/FRS
SVSTATE[42:46] <- SVme
persistence bit (applies to more than one instruction)
SVSTATE[62] <- pst

Special Registers Altered:

None

D.4 svshape

SVM-Form

• svshape SVxd,SVyd,SVzd,SVrm,vf

Pseudo-code:

APPENDIX D. SIMPLE-V PSEUDOCODE 211

for convenience, VL to be calculated and stored in SVSTATE
vlen <- [0] * 7
mscale[0:5] <- 0b000001 # for scaling MAXVL
itercount[0:6] <- [0] * 7
SVSTATE[0:31] <- [0] * 32
only overwrite REMAP if "persistence" is zero
if (SVSTATE[62] = 0b0) then

SVSTATE[32:33] <- 0b00
SVSTATE[34:35] <- 0b00
SVSTATE[36:37] <- 0b00
SVSTATE[38:39] <- 0b00
SVSTATE[40:41] <- 0b00
SVSTATE[42:46] <- 0b00000
SVSTATE[62] <- 0b0
SVSTATE[63] <- 0b0

clear out all SVSHAPEs
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
set schedule up for multiply
if (SVrm = 0b0000) then

VL in Matrix Multiply is xd*yd*zd
xd <- (0b00 || SVxd) + 1
yd <- (0b00 || SVyd) + 1
zd <- (0b00 || SVzd) + 1
n <- xd * yd * zd
vlen[0:6] <- n[14:20]
set up template in SVSHAPE0, then copy to 1-3
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[6:11] <- (0b0 || SVyd) # ydim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim
SVSHAPE0[28:29] <- 0b11 # skip z
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
SVSHAPE3[0:31] <- SVSHAPE0[0:31]
set up FRA
SVSHAPE1[18:20] <- 0b001 # permute x,z,y
SVSHAPE1[28:29] <- 0b01 # skip z
FRC
SVSHAPE2[18:20] <- 0b001 # permute x,z,y
SVSHAPE2[28:29] <- 0b11 # skip y

set schedule up for FFT butterfly
if (SVrm = 0b0001) then

calculate O(N log2 N)
n <- [0] * 3
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
set up template in SVSHAPE0, then copy to 1-3
for FRA and FRT

APPENDIX D. SIMPLE-V PSEUDOCODE 212

SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D FFT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # Butterfly mode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
set up FRB and FRS
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
FRC (coefficients)
SVSHAPE2[28:29] <- 0b10 # k schedule

set schedule up for (i)DCT Inner butterfly
SVrm Mode 4 (Mode 12 for iDCT) is for on-the-fly (Vertical-First Mode)
if ((SVrm = 0b0100) |

(SVrm = 0b1100)) then
calculate O(N log2 N)
n <- [0] * 3
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
n <- ((0b0 || SVxd) + 1) * n
vlen[0:6] <- n[1:7]
set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1100) then

SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Inner Butterfly sub-mode

else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b001 # DCT Inner Butterfly sub-mode
SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop

SVSHAPE0[6:11] <- 0b000011 # (i)DCT Inner Butterfly mode 4
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
if (SVrm != 0b0100) & (SVrm != 0b1100) then

SVSHAPE3[0:31] <- SVSHAPE0[0:31]
for FRA and FRT
SVSHAPE0[28:29] <- 0b01 # j+halfstep schedule
for cos coefficient
SVSHAPE2[28:29] <- 0b10 # ci (k for mode 4) schedule
SVSHAPE2[12:17] <- 0b000000 # reset costable "striding" to 1
if (SVrm != 0b0100) & (SVrm != 0b1100) then

SVSHAPE3[28:29] <- 0b11 # size schedule
set schedule up for (i)DCT Outer butterfly
if (SVrm = 0b0011) | (SVrm = 0b1011) then

calculate O(N log2 N) number of outer butterfly overlapping adds
vlen[0:6] <- [0] * 7
n <- 0b000
size <- 0b0000001
itercount[0:6] <- (0b00 || SVxd) + 0b0000001

APPENDIX D. SIMPLE-V PSEUDOCODE 213

itercount[0:6] <- (0b0 || itercount[0:5])
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
count <- (itercount - 0b0000001) * size
vlen[0:6] <- vlen + count[7:13]
size[0:6] <- (size[1:6] || 0b0)
itercount[0:6] <- (0b0 || itercount[0:5])

set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1011) then

SVSHAPE0[30:31] <- 0b11 # iDCT mode
SVSHAPE0[18:20] <- 0b011 # iDCT Outer Butterfly sub-mode
SVSHAPE0[21:23] <- 0b101 # "inverse" on outer and inner loop

else
SVSHAPE0[30:31] <- 0b01 # DCT mode
SVSHAPE0[18:20] <- 0b100 # DCT Outer Butterfly sub-mode

SVSHAPE0[6:11] <- 0b000010 # DCT Butterfly mode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31] # j+halfstep schedule
SVSHAPE2[0:31] <- SVSHAPE0[0:31] # costable coefficients
for FRA and FRT
SVSHAPE1[28:29] <- 0b01 # j+halfstep schedule
reset costable "striding" to 1
SVSHAPE2[12:17] <- 0b000000

set schedule up for DCT COS table generation
if (SVrm = 0b0101) | (SVrm = 0b1101) then

calculate O(N log2 N)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
itercount[0:6] <- (0b0 || itercount[0:5])
n <- [0] * 3
do while n < 5

if SVxd[4-n] = 0 then
leave

n <- n + 1
vlen[0:6] <- vlen + itercount
itercount[0:6] <- (0b0 || itercount[0:5])

set up template in SVSHAPE0, then copy to 1-3
set up FRB and FRS
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b01 # DCT/FFT mode
SVSHAPE0[6:11] <- 0b000100 # DCT Inner Butterfly COS-gen mode
if (SVrm = 0b0101) then

SVSHAPE0[21:23] <- 0b001 # "inverse" on outer loop for DCT
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
SVSHAPE2[0:31] <- SVSHAPE0[0:31]
for cos coefficient

APPENDIX D. SIMPLE-V PSEUDOCODE 214

SVSHAPE1[28:29] <- 0b10 # ci schedule
SVSHAPE2[28:29] <- 0b11 # size schedule

set schedule up for iDCT / DCT inverse of half-swapped ordering
if (SVrm = 0b0110) | (SVrm = 0b1110) | (SVrm = 0b1111) then

vlen[0:6] <- (0b00 || SVxd) + 0b0000001
set up template in SVSHAPE0
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
if (SVrm = 0b1110) then

SVSHAPE0[18:20] <- 0b001 # DCT opposite half-swap
if (SVrm = 0b1111) then

SVSHAPE0[30:31] <- 0b01 # FFT mode
else

SVSHAPE0[30:31] <- 0b11 # DCT mode
SVSHAPE0[6:11] <- 0b000101 # DCT "half-swap" mode

set schedule up for parallel reduction or prefix-sum
if (SVrm = 0b0111) then

is scan/prefix-sum
is_scan <- SVyd = 2
calculate the total number of operations (brute-force)
vlen[0:6] <- [0] * 7
itercount[0:6] <- (0b00 || SVxd) + 0b0000001
if is_scan then

prefix sum algorithm with operations replaced with
incrementing vlen
dist <- 1
vlen[0:6] <- 0
do while dist <u itercount

start <- dist * 2 - 1
step <- dist * 2
i <- start
do while i <u itercount

vlen[0:6] <- vlen[0:6] + 1
i <- i + step

dist <- dist * 2
dist <- dist / 2
do while dist != 0

i <- dist * 3 - 1
do while i <u itercount

vlen[0:6] <- vlen[0:6] + 1
i <- i + dist * 2

dist <- dist / 2
else

step <- 0b0000001
i <- 0b0000000
do while step <u itercount

newstep <- step[1:6] || 0b0
j[0:6] <- 0b0000000
do while (j+step <u itercount)

j <- j + newstep
i <- i + 1

step <- newstep
VL in Parallel-Reduce is the number of operations
vlen[0:6] <- i

APPENDIX D. SIMPLE-V PSEUDOCODE 215

set up template in SVSHAPE0, then copy to 1. only 2 needed
SVSHAPE0[0:5] <- (0b0 || SVxd) # xdim
SVSHAPE0[12:17] <- (0b0 || SVzd) # zdim - "striding" (2D DCT)
mscale <- (0b0 || SVzd) + 1
SVSHAPE0[30:31] <- 0b10 # parallel reduce/prefix submode
copy
SVSHAPE1[0:31] <- SVSHAPE0[0:31]
set up submodes: parallel or prefix
SVSHAPE0[28:29] <- 0b00 # left operand
SVSHAPE1[28:29] <- 0b01 # right operand
if is_scan then

SVSHAPE0[28:29] <- 0b10 # left operand
SVSHAPE1[28:29] <- 0b11 # right operand

set VL, MVL and Vertical-First
m[0:12] <- vlen * mscale
maxvl[0:6] <- m[6:12]
SVSTATE[0:6] <- maxvl # MAVXL
SVSTATE[7:13] <- vlen # VL
SVSTATE[63] <- vf

Special Registers Altered:

None

D.5 svindex

SVI-Form

• svindex SVG,rmm,SVd,ew,SVyx,mm,sk

Pseudo-code:

based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)

d <- d + 1
set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
if SVyx = 0 then

shape[18:20] <- 0b110 # indexed xd/yd
shape[0:5] <- (0b0 || SVd) # xdim
if sk = 0 then shape[6:11] <- 0 # ydim
else shape[6:11] <- 0b111111 # ydim max

else
shape[18:20] <- 0b111 # indexed yd/xd
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max
shape[0:5] <- (0b0 || SVd) # ydim

shape[12:17] <- (0b0 || SVG) # SVGPR
shape[28:29] <- ew # element-width override
shape[21] <- sk # skip 1st dimension
select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence

APPENDIX D. SIMPLE-V PSEUDOCODE 216

if mm = 0 then
clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
idx <- 0
for bit = 0 to 4

if rmm[4-bit] then
activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1

else
refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1

Special Registers Altered:

None

D.6 svshape2

SVM2-Form

• svshape2 SVo,SVyx,rmm,SVd,sk,mm

Pseudo-code:

based on nearest MAXVL compute other dimension
MVL <- SVSTATE[0:6]
d <- [0] * 6
dim <- SVd+1
do while d*dim <u ([0]*4 || MVL)

d <- d + 1
set up template, then copy once location identified
shape <- [0]*32
shape[30:31] <- 0b00 # mode
shape[0:5] <- (0b0 || SVd) # x/ydim
if SVyx = 0 then

shape[18:20] <- 0b000 # ordering xd/yd(/zd)
if sk = 0 then shape[6:11] <- 0 # ydim

APPENDIX D. SIMPLE-V PSEUDOCODE 217

else shape[6:11] <- 0b111111 # ydim max
else

shape[18:20] <- 0b010 # ordering yd/xd(/zd)
if sk = 1 then shape[6:11] <- 0 # ydim
else shape[6:11] <- d-1 # ydim max

offset (the prime purpose of this instruction)
shape[24:27] <- SVo # offset
if sk = 1 then shape[28:29] <- 0b01 # skip 1st dimension
else shape[28:29] <- 0b00 # no skipping
select the mode for updating SVSHAPEs
SVSTATE[62] <- mm # set or clear persistence
if mm = 0 then

clear out all SVSHAPEs first
SVSHAPE0[0:31] <- [0] * 32
SVSHAPE1[0:31] <- [0] * 32
SVSHAPE2[0:31] <- [0] * 32
SVSHAPE3[0:31] <- [0] * 32
SVSTATE[32:41] <- [0] * 10 # clear REMAP.mi/o
SVSTATE[42:46] <- rmm # rmm exactly REMAP.SVme
idx <- 0
for bit = 0 to 4

if rmm[4-bit] then
activate requested shape
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
increment shape index, modulo 4
if idx = 3 then idx <- 0
else idx <- idx + 1

else
refined SVSHAPE/REMAP update mode
bit <- rmm[0:2]
idx <- rmm[3:4]
if idx = 0 then SVSHAPE0 <- shape
if idx = 1 then SVSHAPE1 <- shape
if idx = 2 then SVSHAPE2 <- shape
if idx = 3 then SVSHAPE3 <- shape
SVSTATE[bit*2+32:bit*2+33] <- idx
SVSTATE[46-bit] <- 1

Special Registers Altered:

None

Appendix E

Simple-V Analysis

E.1 Simple-V Analysis

The creation and maintenance of SVP64 Categorisation is an automated process that uses “Register profiling”,
reading machine-readable versions of the Power ISA Specification and tables in order to make the Vectorisation
Categorisation. To create this information by hand is neither sensible nor desirable: it may take far longer and
introduce errors.

This in turn effectively makes that analysis program part of the Simple-V Specification. Its source code is
therefore listed here

#!/usr/bin/env python2
#
NOTE that this program is python2 compatible, please do not stop it
from working by adding syntax that prevents that.
#
Initial version written by lkcl Oct 2020
This program analyses the Power 9 op codes and looks at in/out register uses
The results are displayed:
https://libre-soc.org/openpower/opcode_regs_deduped/
#
It finds .csv files in the directory isatables/
then goes through the categories and creates svp64 CSV augmentation
tables on a per-opcode basis
#
NOTE: this program is effectively part of the Simple-V Specification.
it encapsulates the relationships of what can be SVP64-encoded and
holds all of the information on how to encode and decode SVP64.
By auto-generating tables that go into the Simple-V Specification
this program *is* the specification. do not be confused just because
it is in python: if you do not understand please ask questions and
help create patches with explanatory comments.

import argparse
import csv
import enum
import os
from os.path import dirname, join
from glob import glob
from collections import defaultdict

218

APPENDIX E. SIMPLE-V ANALYSIS 219

from collections import OrderedDict
from openpower.decoder.power_svp64 import SVP64RM
from openpower.decoder.power_enums import find_wiki_file, get_csv
from openpower.util import log

Ignore those containing: valid test sprs
def glob_valid_csvs(root):

def check_csv(fname):
_, name = os.path.split(fname)
if '-' in name:

return False
if 'valid' in fname:

return False
if 'test' in fname:

return False
if fname.endswith('insndb.csv'):

return False
if fname.endswith('sprs.csv'):

return False
if fname.endswith('minor_19_valid.csv'):

return False
if 'RM' in fname:

return False
return True

yield from filter(check_csv, glob(root))

Write an array of dictionaries to the CSV file name:
def write_csv(name, items, headers):

file_path = find_wiki_file(name)
with open(file_path, 'w') as csvfile:

writer = csv.DictWriter(csvfile, headers, lineterminator="\n")
writer.writeheader()
writer.writerows(items)

This will return True if all values are true.
Not sure what this is about

def blank_key(row):
for v in row.values():
if 'SPR' in v: # skip all SPRs
return True
for v in row.values():

if v:
return False

return True

General purpose registers have names like: RA, RT, R1, ...
Floating point registers names like: FRT, FRA, FR1, ..., FRTp, ...
Return True if field is a register

APPENDIX E. SIMPLE-V ANALYSIS 220

def isreg(field):
return (field.startswith('R') or field.startswith('FR') or

field == 'SPR')

These are the attributes of the instructions,
register names
keycolumns = ['unit', 'in1', 'in2', 'in3', 'out', 'CR in', 'CR out',

] # don't think we need these: 'ldst len', 'rc', 'lk']

tablecols = ['unit', 'in', 'outcnt', 'CR in', 'CR out', 'imm'
] # don't think we need these: 'ldst len', 'rc', 'lk']

def create_key(row):
""" create an equivalent of a database key by which it is possible
to easily categorise an instruction. later this category is used
to decide what kind of EXTRA encoding is to be done because the
key contains the total number of input and output registers
"""
res = OrderedDict()
#print ("row", row)
for key in keycolumns:

registers IN - special-case: count number of regs RA/RB/RC/RS
if key in ['in1', 'in2', 'in3']:

if 'in' not in res:
res['in'] = 0

if row['unit'] == 'BRANCH': # branches must not include Vector SPRs
continue

if isreg(row[key]):
res['in'] += 1

registers OUT
if key == 'out':

If upd is 1 then increment the count of outputs
if 'outcnt' not in res:

res['outcnt'] = 0
if isreg(row[key]):

res['outcnt'] += 1
if row['upd'] == '1':

res['outcnt'] += 1

CRs (Condition Register) (CR0 .. CR7)
if key.startswith('CR'):

if row[key].startswith('NONE'):
res[key] = '0'

else:
res[key] = '1'

if row['comment'].startswith('cr'):
res['crop'] = '1'

unit
if key == 'unit':

if row[key] == 'LDST': # we care about LDST units
res[key] = row[key]

else:

APPENDIX E. SIMPLE-V ANALYSIS 221

res[key] = 'OTHER'
LDST len (LoadStore length)
if key.startswith('ldst'):

if row[key].startswith('NONE'):
res[key] = '0'

else:
res[key] = '1'

rc, lk
if key in ['rc', 'lk']:

if row[key] == 'ONE':
res[key] = '1'

elif row[key] == 'NONE':
res[key] = '0'

else:
res[key] = 'R'

if key == 'lk':
res[key] = row[key]

Convert the numerics 'in' & 'outcnt' to strings
res['in'] = str(res['in'])
res['outcnt'] = str(res['outcnt'])

constants
if row['in2'].startswith('CONST_'):

res['imm'] = "1" # row['in2'].split("_")[1]
else:

res['imm'] = ''

return res

#

def dformat(d):
res = []
for k, v in d.items():

res.append("%s: %s" % (k, v))
return ' '.join(res)

def tformat(d):
return "| " + ' | '.join(d) + " |"

def keyname(row):
"""converts a key into a readable string. anything null or zero
is skipped, shortening the readable string
"""
res = []
if row['unit'] != 'OTHER':

res.append(row['unit'])
if row['in'] != '0':

res.append('%sR' % row['in'])
if row['outcnt'] != '0':

res.append('%sW' % row['outcnt'])

APPENDIX E. SIMPLE-V ANALYSIS 222

if row['CR in'] == '1' and row['CR out'] == '1':
if 'crop' in row:

res.append("CR=2R1W")
else:

res.append("CRio")
elif row['CR in'] == '1':

res.append("CRi")
elif row['CR out'] == '1':

res.append("CRo")
elif 'imm' in row and row['imm']:

res.append("imm")
return '-'.join(res)

class Format(enum.Enum):
BINUTILS = enum.auto()
VHDL = enum.auto()

@classmethod
def _missing_(cls, value):

return {
"binutils": Format.BINUTILS,
"vhdl": Format.VHDL,

}[value.lower()]

def __str__(self):
return self.name.lower()

def declarations(self, values, lens):
def declaration_binutils(value, width):

yield f"/* TODO: implement binutils declaration (value={value!r}, width={width!r}) */"

def declaration_vhdl(value, width):
yield f" type sv_{value}_rom_array_t is " \

f"array(0 to {width}) of sv_decode_rom_t;"

for value in values:
if value not in lens:

todo = [f"TODO {value} (or no SVP64 augmentation)"]
todo = self.wrap_comment(todo)
yield from map(lambda line: f" {line}", todo)

else:
width = lens[value]
yield from {

Format.BINUTILS: declaration_binutils,
Format.VHDL: declaration_vhdl,

}[self](value, width)

def definitions(self, entries_svp64, fullcols):
def definitions_vhdl():

for (value, entries) in entries_svp64.items():
yield ""
yield f" constant sv_{value}_decode_rom_array :"
yield f" sv_{value}_rom_array_t := ("
yield f" -- {' '.join(fullcols)}"

APPENDIX E. SIMPLE-V ANALYSIS 223

for (op, insn, row) in entries:
yield f" {op:>13} => ({', '.join(row)}), -- {insn}"

yield f" {'others':>13} => sv_illegal_inst"
yield ");"
yield ""

def definitions_binutils():
yield f"/* TODO: implement binutils definitions */"

yield from {
Format.BINUTILS: definitions_binutils,
Format.VHDL: definitions_vhdl,

}[self]()

def wrap_comment(self, lines):
def wrap_comment_binutils(lines):

lines = tuple(lines)
if len(lines) == 1:

yield f"/* {lines[0]} */"
else:

yield "/*"
yield from map(lambda line: f" * {line}", lines)
yield " */"

def wrap_comment_vhdl(lines):
yield from map(lambda line: f"-- {line}", lines)

yield from {
Format.BINUTILS: wrap_comment_binutils,
Format.VHDL: wrap_comment_vhdl,

}[self](lines)

def read_csvs():
csvs = {}
csvs_svp64 = {}
bykey = {}
primarykeys = set()
dictkeys = OrderedDict()
immediates = {}
insns = {} # dictionary of CSV row, by instruction
insn_to_csv = {}

Expand that (all .csv files)
pth = find_wiki_file("*.csv")

Ignore those containing: valid test sprs
for fname in glob_valid_csvs(pth):

csvname = os.path.split(fname)[1]
csvname_ = csvname.split(".")[0]
csvname is something like: minor_59.csv, fname the whole path
csv = get_csv(fname)
csvs[fname] = csv

APPENDIX E. SIMPLE-V ANALYSIS 224

csvs_svp64[csvname_] = []
for row in csv:

if blank_key(row):
continue

#print("row", row)
insn_name = row['comment']
condition = row['CONDITIONS']
skip instructions that are not suitable
if insn_name.startswith("l") and insn_name.endswith("br"):

continue # skip pseudo-alias lxxxbr
if insn_name in ['mcrxr', 'mcrxrx', 'darn']:

continue
if insn_name in ['bctar', 'bcctr']: # for now. TODO

continue
if 'rfid' in insn_name:

continue
if 'addpcis' in insn_name: # skip for now

continue

sv.bc is being classified as 2P-2S-1D by mistake due to SPRs
if insn_name.startswith('bc'):

whoops: remove out reg (SPRs CTR etc)
row['in1'] = 'NONE'
row['in2'] = 'NONE'
row['in3'] = 'NONE'
row['out'] = 'NONE'

insns[(insn_name, condition)] = row # accumulate csv data
insn_to_csv[insn_name] = csvname_ # CSV file name by instruction
dkey = create_key(row)
key = tuple(dkey.values())
#print("key=", key, dkey)
dictkeys[key] = dkey
primarykeys.add(key)
if key not in bykey:

bykey[key] = []
bykey[key].append((csvname, row['opcode'], insn_name, condition,

row['form'].upper() + '-Form'))

detect immediates, collate them (useful info)
if row['in2'].startswith('CONST_'):

imm = row['in2'].split("_")[1]
if key not in immediates:

immediates[key] = set()
immediates[key].add(imm)

primarykeys = list(primarykeys)
primarykeys.sort()

return (csvs, csvs_svp64, primarykeys, bykey, insn_to_csv, insns,
dictkeys, immediates)

def regs_profile(insn, res):
"""get a more detailed register profile: 1st operand is RA,

APPENDIX E. SIMPLE-V ANALYSIS 225

2nd is RB, etc. etc
"""
regs = []
for k in ['in1', 'in2', 'in3', 'out', 'CR in', 'CR out']:

if insn[k].startswith('CONST'):
res[k] = ''
regs.append('')

else:
res[k] = insn[k]
if insn[k] == 'RA_OR_ZERO':

regs.append('RA')
elif insn[k] != 'NONE':

regs.append(insn[k])
else:

regs.append('')
return regs

def extra_classifier(insn_name, value, name, res, regs):
"""extra_classifier: creates the SVP64.RM EXTRA2/3 classification.
there is very little space (9 bits) to mark register operands
(RT RA RB, BA BB, BFA, FRS etc.) with the "extra" information
needed to tell if *EACH* operand (of which there can be up to five!)
is Vectorised, and whether its numbering is extended into the
0..127 range rather than the limited 3/5 bit of Scalar v3.0 Power ISA.

thus begins the rather tedious but by-rote examination of EVERY
Scalar instruction, working out how best to tell a decoder how to
extend the registers. EXTRA2 can have up to 4 slots (of 2 bit each)
where due to RM.EXTRA being 9 bits, EXTRA3 can have up to 3 slots
(of 3 bit each). the index REGNAME says which slot the register
named REGNAME must read its decoding from. d: means destination,
s: means source. some are *shared slots* especially LDST update.
some Rc=1 ops have the CR0/CR1 as a co-result which is also
obviously Vectorised if the result is Vectorised.

it is actually quite straightforward but the sheer quantity of
Scalar Power ISA instructions made it prudent to do this in an
intelligent way, almost by-rote, by analysing the register profiles.
"""
for LD/ST FP, use FRT/FRS not RT/RS, and use CR1 not CR0
if insn_name.startswith("lf"):

dRT = 'd:FRT'
dCR = 'd:CR1'

else:
dRT = 'd:RT'
dCR = 'd:CR0'

if insn_name.startswith("stf"):
sRS = 's:FRS'
dCR = 'd:CR1'

else:
sRS = 's:RS'
dCR = 'd:CR0'

sigh now the fun begins. this isn't the sanest way to do it

APPENDIX E. SIMPLE-V ANALYSIS 226

but the patterns are pretty regular. we start with the "profile"
because that determines how much space is available (total num
regs to decode) then if necessary begin apecialising either
by the instruction name or through more detailed register
profiling. example:
if regs == ['RA', '', '', 'RT', '', '']:
is in the order in1 in2 in3 out1 out2 Rc=1

start with LD/ST

if value == 'LDSTRM-2P-1S1D':
res['Etype'] = 'EXTRA3' # RM EXTRA3 type
res['0'] = dRT # RT: Rdest_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

elif value == 'LDSTRM-2P-1S2D':
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
res['0'] = dRT # RT: Rdest_EXTRA3
res['1'] = 'd:RA' # RA: Rdest2_EXTRA2
res['2'] = 's:RA' # RA: Rsrc1_EXTRA2

elif value == 'LDSTRM-2P-2S':
stw, std, sth, stb
res['Etype'] = 'EXTRA3' # RM EXTRA3 type
res['0'] = sRS # RS: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

elif value == 'LDSTRM-2P-2S1D':
if 'st' in insn_name and 'x' not in insn_name: # stwu/stbu etc

res['Etype'] = 'EXTRA2' # RM EXTRA2 type
res['0'] = 'd:RA' # RA: Rdest1_EXTRA2
res['1'] = sRS # RS: Rdsrc1_EXTRA2
res['2'] = 's:RA' # RA: Rsrc2_EXTRA2

elif 'st' in insn_name and 'x' in insn_name: # stwux
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
res['0'] = 'd:RA' # RA: Rdest1_EXTRA2
RS: Rdest2_EXTRA2, RA: Rsrc1_EXTRA2
res['1'] = "%s;%s" % (sRS, 's:RA')
res['2'] = 's:RB' # RB: Rsrc2_EXTRA2

elif 'u' in insn_name: # ldux etc.
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
res['0'] = dRT # RT: Rdest1_EXTRA2
res['1'] = 'd:RA' # RA: Rdest2_EXTRA2
res['2'] = 's:RB' # RB: Rsrc1_EXTRA2

else:
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
res['0'] = dRT # RT: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RB: Rsrc2_EXTRA2

elif value == 'LDSTRM-2P-3S':
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
if 'cx' in insn_name:

res['0'] = "%s;%s" % (sRS, dCR) # RS: Rsrc1_EXTRA2 CR0: dest

APPENDIX E. SIMPLE-V ANALYSIS 227

else:
res['0'] = sRS # RS: Rsrc1_EXTRA2

res['1'] = 's:RA' # RA: Rsrc2_EXTRA2
res['2'] = 's:RB' # RA: Rsrc3_EXTRA2

now begins,arithmetic

elif value == 'RM-2P-1S1D':
res['Etype'] = 'EXTRA3' # RM EXTRA3 type
if insn_name == 'mtspr':

res['0'] = 'd:SPR' # SPR: Rdest1_EXTRA3
res['1'] = 's:RS' # RS: Rsrc1_EXTRA3

elif insn_name == 'mfspr':
res['0'] = 'd:RS' # RS: Rdest1_EXTRA3
res['1'] = 's:SPR' # SPR: Rsrc1_EXTRA3

elif name == 'CRio' and insn_name == 'mcrf':
res['0'] = 'd:BF' # BFA: Rdest1_EXTRA3
res['1'] = 's:BFA' # BFA: Rsrc1_EXTRA3

elif 'mfcr' in insn_name or 'mfocrf' in insn_name:
res['0'] = 'd:RT' # RT: Rdest1_EXTRA3
res['1'] = 's:CR' # CR: Rsrc1_EXTRA3

elif insn_name == 'setb':
res['0'] = 'd:RT' # RT: Rdest1_EXTRA3
res['1'] = 's:BFA' # BFA: Rsrc1_EXTRA3

elif insn_name.startswith('cmp'): # cmpi
res['0'] = 'd:BF' # BF: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

elif regs == ['RA', '', '', 'RT', '', '']:
res['0'] = 'd:RT' # RT: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

elif regs == ['RA', '', '', 'RT', '', 'CR0']:
res['0'] = 'd:RT;d:CR0' # RT,CR0: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

elif (regs == ['RS', '', '', 'RA', '', 'CR0'] or
regs == ['', '', 'RS', 'RA', '', 'CR0']):

res['0'] = 'd:RA;d:CR0' # RA,CR0: Rdest1_EXTRA3
res['1'] = 's:RS' # RS: Rsrc1_EXTRA3

elif regs == ['RS', '', '', 'RA', '', '']:
res['0'] = 'd:RA' # RA: Rdest1_EXTRA3
res['1'] = 's:RS' # RS: Rsrc1_EXTRA3

elif regs == ['', 'FRB', '', 'FRT', '0', 'CR1']:
res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3

elif regs == ['', 'FRB', '', '', '', 'CR1']:
res['0'] = 'd:CR1' # CR1: Rdest1_EXTRA3
res['1'] = 's:FRB' # FRA: Rsrc1_EXTRA3

elif regs == ['', 'FRB', '', '', '', 'BF']:
res['0'] = 'd:BF' # BF: Rdest1_EXTRA3
res['1'] = 's:FRB' # FRA: Rsrc1_EXTRA3

elif regs == ['', 'FRB', '', 'FRT', '', 'CR1']:
res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA3
res['1'] = 's:FRB' # FRB: Rsrc1_EXTRA3

elif insn_name == 'fishmv':
an overwrite instruction

APPENDIX E. SIMPLE-V ANALYSIS 228

res['0'] = 'd:FRS' # FRS: Rdest1_EXTRA3
res['1'] = 's:FRS' # FRS: Rsrc1_EXTRA3

elif insn_name == 'setvl':
res['0'] = 'd:RT' # RT: Rdest1_EXTRA3
res['1'] = 's:RA' # RS: Rsrc1_EXTRA3

else:
res['0'] = 'TODO'
print("regs TODO", insn_name, regs)

elif value == 'RM-1P-2S1D':
res['Etype'] = 'EXTRA3' # RM EXTRA3 type
if insn_name.startswith('cr'):

res['0'] = 'd:BT' # BT: Rdest1_EXTRA3
res['1'] = 's:BA' # BA: Rsrc1_EXTRA3
res['2'] = 's:BB' # BB: Rsrc2_EXTRA3

elif regs == ['FRA', '', 'FRC', 'FRT', '', 'CR1']:
res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3
res['2'] = 's:FRC' # FRC: Rsrc1_EXTRA3

should be for fcmp
elif regs == ['FRA', 'FRB', '', '', '', 'BF']:

res['0'] = 'd:BF' # BF: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3
res['2'] = 's:FRB' # FRB: Rsrc1_EXTRA3

elif regs == ['FRA', 'FRB', '', 'FRT', '', '']:
res['0'] = 'd:FRT' # FRT: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3
res['2'] = 's:FRB' # FRB: Rsrc1_EXTRA3

elif regs == ['FRA', 'FRB', '', 'FRT', '', 'CR1']:
res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3
res['2'] = 's:FRB' # FRB: Rsrc1_EXTRA3

elif regs == ['FRA', 'RB', '', 'FRT', '', 'CR1']:
res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA3
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA3
res['2'] = 's:RB' # RB: Rsrc1_EXTRA3

elif name == '2R-1W' or insn_name == 'cmpb': # cmpb
if insn_name in ['bpermd', 'cmpb']:

res['0'] = 'd:RA' # RA: Rdest1_EXTRA3
res['1'] = 's:RS' # RS: Rsrc1_EXTRA3

else:
res['0'] = 'd:RT' # RT: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3

res['2'] = 's:RB' # RB: Rsrc1_EXTRA3
elif insn_name.startswith('cmp'): # cmp

res['0'] = 'd:BF' # BF: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3
res['2'] = 's:RB' # RB: Rsrc1_EXTRA3

elif (regs == ['', 'RB', 'RS', 'RA', '', 'CR0'] or
regs == ['RS', 'RB', '', 'RA', '', 'CR0']):

res['0'] = 'd:RA;d:CR0' # RA,CR0: Rdest1_EXTRA3
res['1'] = 's:RB' # RB: Rsrc1_EXTRA3
res['2'] = 's:RS' # RS: Rsrc1_EXTRA3

elif regs == ['RA', 'RB', '', 'RT', '', 'CR0']:
res['0'] = 'd:RT;d:CR0' # RT,CR0: Rdest1_EXTRA3

APPENDIX E. SIMPLE-V ANALYSIS 229

res['1'] = 's:RA' # RA: Rsrc1_EXTRA3
res['2'] = 's:RB' # RB: Rsrc1_EXTRA3

elif regs == ['RA', '', 'RS', 'RA', '', 'CR0']:
res['0'] = 'd:RA;d:CR0' # RA,CR0: Rdest1_EXTRA3
res['1'] = 's:RA' # RA: Rsrc1_EXTRA3
res['2'] = 's:RS' # RS: Rsrc1_EXTRA3

else:
res['0'] = 'TODO'

elif value == 'RM-2P-2S1D':
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
if insn_name.startswith('mt'): # mtcrf

res['0'] = 'd:CR' # CR: Rdest1_EXTRA2
res['1'] = 's:RS' # RS: Rsrc1_EXTRA2
res['2'] = 's:CR' # CR: Rsrc2_EXTRA2

else:
res['0'] = 'TODO'

elif value == 'RM-1P-3S1D':
res['Etype'] = 'EXTRA2' # RM EXTRA2 type
if regs == ['FRT', 'FRB', 'FRA', 'FRT', '', 'CR1']: # ffmadds/fdmadds

res['0'] = 'd:FRT;d:CR1' # FRT,CR1: Rdest1_EXTRA2
res['1'] = 's:FRT' # FRT: Rsrc1_EXTRA2
res['2'] = 's:FRB' # FRB: Rsrc2_EXTRA2
res['3'] = 's:FRA' # FRA: Rsrc3_EXTRA2

elif regs == ['RA', 'RB', 'RC', 'RT', '', '']: # madd*
res['0'] = 'd:RT' # RT,CR0: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RT: Rsrc2_EXTRA2
res['3'] = 's:RC' # RT: Rsrc3_EXTRA2

elif regs == ['RA', 'RB', 'RC', 'RT', '', 'CR0']: # pcdec
res['0'] = 'd:RT;d:CR0' # RT,CR0: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RT: Rsrc2_EXTRA2
res['3'] = 's:RC' # RT: Rsrc3_EXTRA2

elif regs == ['RA', 'RB', 'RT', 'RT', '', 'CR0']: # overwrite 3-in
res['0'] = 'd:RT;d:CR0' # RT,CR0: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RT: Rsrc2_EXTRA2
res['3'] = 's:RT' # RT: Rsrc3_EXTRA2

elif regs == ['RA', 'RB', 'RT', 'RT', '', '']: # maddsubrs
res['0'] = 'd:RT' # RT: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RT: Rsrc2_EXTRA2
res['3'] = 's:RT' # RT: Rsrc3_EXTRA2

elif insn_name == 'isel':
res['0'] = 'd:RT' # RT: Rdest1_EXTRA2
res['1'] = 's:RA' # RA: Rsrc1_EXTRA2
res['2'] = 's:RB' # RT: Rsrc2_EXTRA2
res['3'] = 's:BC' # BC: Rsrc3_EXTRA2

else: # fmadd*
res['0'] = 'd:FRT;d:CR1' # FRT, CR1: Rdest1_EXTRA2
res['1'] = 's:FRA' # FRA: Rsrc1_EXTRA2
res['2'] = 's:FRB' # FRB: Rsrc2_EXTRA2
res['3'] = 's:FRC' # FRC: Rsrc3_EXTRA2

APPENDIX E. SIMPLE-V ANALYSIS 230

elif value == 'RM-1P-1D':
res['Etype'] = 'EXTRA3' # RM EXTRA3 type
if insn_name == 'svstep':

res['0'] = 'd:RT;d:CR0' # RT,CR0: Rdest1_EXTRA3
if insn_name == 'fmvis':

res['0'] = 'd:FRS' # FRS: Rdest1_EXTRA3

HACK! thos should be RM-1P-1S butvthere is a bug with sv.bc
elif value == 'RM-2P-1S':

res['Etype'] = 'EXTRA3' # RM EXTRA3 type
if insn_name.startswith('bc'):

res['0'] = 's:BI' # BI: Rsrc1_EXTRA3

def process_csvs(format):

print("# Draft SVP64 Power ISA register 'profile's")
print('')
print("this page is auto-generated, do not edit")
print("created by http://libre-soc.org/openpower/sv_analysis.py")
print('')

(csvs, csvs_svp64, primarykeys, bykey, insn_to_csv, insns,
dictkeys, immediates) = read_csvs()

mapping to old SVPrefix "Forms"
mapsto = {'3R-1W-CRo': 'RM-1P-3S1D',

'3R-1W': 'RM-1P-3S1D',
'2R-1W-CRio': 'RM-1P-2S1D',
'2R-1W-CRi': 'RM-1P-3S1D',
'2R-1W-CRo': 'RM-1P-2S1D',
'2R': 'non-SV',
'2R-1W': 'RM-1P-2S1D',
'1R-CRio': 'RM-2P-2S1D',
'2R-CRio': 'RM-1P-2S1D',
'2R-CRo': 'RM-1P-2S1D',
'1R': 'non-SV',
'1R-1W-CRio': 'RM-2P-1S1D',
'1R-1W-CRo': 'RM-2P-1S1D',
'1R-1W': 'RM-2P-1S1D',
'1R-1W-imm': 'RM-2P-1S1D',
'1R-CRo': 'RM-2P-1S1D',
'1R-imm': 'RM-1P-1S',
'1W-CRo': 'RM-1P-1D',
'1W': 'non-SV',
'1W-imm': 'RM-1P-1D',
'1W-CRi': 'RM-2P-1S1D',
'CRio': 'RM-2P-1S1D',
'CR=2R1W': 'RM-1P-2S1D',
'CRi': 'RM-2P-1S', # HACK, bc here, it should be 1P
'imm': 'non-SV',
'': 'non-SV',
'LDST-2R-imm': 'LDSTRM-2P-2S',
'LDST-2R-1W-imm': 'LDSTRM-2P-2S1D',

APPENDIX E. SIMPLE-V ANALYSIS 231

'LDST-2R-1W': 'LDSTRM-2P-2S1D',
'LDST-2R-2W': 'LDSTRM-2P-2S1D',
'LDST-1R-1W-imm': 'LDSTRM-2P-1S1D',
'LDST-1R-2W-imm': 'LDSTRM-2P-1S2D',
'LDST-3R': 'LDSTRM-2P-3S',
'LDST-3R-CRo': 'LDSTRM-2P-3S', # st*x
'LDST-3R-1W': 'LDSTRM-2P-2S1D', # st*x
}

print("# map to old SV Prefix")
print('')
print('|internal key | public name |')
print('|----- | ---------- |')
for key in primarykeys:

name = keyname(dictkeys[key])
value = mapsto.get(name, "-")
print(tformat([name, value + " "]))

print('')
print('')

print("# keys")
print('')
print(tformat(tablecols) + " imms | name |")
print(tformat([" - "] * (len(tablecols)+2)))

print out the keys and the table from which they're derived
for key in primarykeys:

name = keyname(dictkeys[key])
row = tformat(dictkeys[key].values())
imms = list(immediates.get(key, ""))
imms.sort()
row += " %s | " % ("/".join(imms))
row += " %s |" % name
print(row)

print('')
print('')

print out, by remap name, all the instructions under that category
for key in primarykeys:

name = keyname(dictkeys[key])
value = mapsto.get(name, "-")
print("## %s (%s)" % (name, value))
print('')
print(tformat(['CSV', 'opcode', 'asm', 'flags', 'form']))
print(tformat(['---', '------', '---', '-----', '----']))
rows = bykey[key]
rows.sort()
for row in rows:

print(tformat(row))
print('')
print('')

for fname, csv in csvs.items():
print (fname)

for insn, row in insns.items():

APPENDIX E. SIMPLE-V ANALYSIS 232

print (insn, row)

print("# svp64 remaps")
svp64 = OrderedDict()
create a CSV file, per category, with SV "augmentation" info
XXX note: 'out2' not added here, needs to be added to CSV files
KEEP TRACK OF THESE https://bugs.libre-soc.org/show_bug.cgi?id=619
csvcols = ['insn', 'mode', 'CONDITIONS', 'Ptype', 'Etype', 'SM']
csvcols += ['0', '1', '2', '3']
csvcols += ['in1', 'in2', 'in3', 'out', 'CR in', 'CR out'] # temporary
for key in primarykeys:

get the decoded key containing row-analysis, and name/value
dkey = dictkeys[key]
name = keyname(dkey)
value = mapsto.get(name, "-")
if value == 'non-SV':

continue

print out svp64 tables by category
print("* **%s**: %s" % (name, value))

store csv entries by svp64 RM category
if value not in svp64:

svp64[value] = []

rows = bykey[key]
rows.sort()

for row in rows:
for idx in range(len(row)):
if row[idx] == 'NONE':
row[idx] = ''
get the instruction
#print(key, row)
insn_name = row[2]
condition = row[3]
insn = insns[(insn_name, condition)]

start constructing svp64 CSV row
res = OrderedDict()
res['insn'] = insn_name
res['CONDITIONS'] = condition
res['Ptype'] = value.split('-')[1] # predication type (RM-xN-xxx)
get whether R_xxx_EXTRAn fields are 2-bit or 3-bit
res['Etype'] = 'EXTRA2'
go through each register matching to Rxxxx_EXTRAx
for k in ['0', '1', '2', '3']:

res[k] = ''
create "fake" out2 (TODO, needs to be added to CSV files)
KEEP TRACK HERE https://bugs.libre-soc.org/show_bug.cgi?id=619
res['out2'] = 'NONE'
if insn['upd'] == '1': # LD/ST with update has RA as out2

res['out2'] = 'RA'

set the SVP64 mode to NORMAL, LDST, BRANCH or CR

APPENDIX E. SIMPLE-V ANALYSIS 233

crops = ['mfcr', 'mfocrf', 'mtcrf', 'mtocrf',
]

mode = 'NORMAL'
if value.startswith('LDST'):

if 'x' in insn_name: # Indexed detection
mode = 'LDST_IDX'

else:
mode = 'LDST_IMM'

elif insn_name.startswith('bc'):
mode = 'BRANCH'

elif insn_name.startswith('cmp') or insn_name.startswith('cr') or insn_name in crops:
mode = 'CROP'

res['mode'] = mode

create a register profile list (update res row as well)
regs = regs_profile(insn, res)

#print("regs", insn_name, regs)
extra_classifier(insn_name, value, name, res, regs)

source-mask is hard to detect, it's part of RM-nn-nn.
to make style easier, create a yes/no decision here
see https://libre-soc.org/openpower/sv/svp64/#extra_remap
MASK_SRC
vstripped = value.replace("LDST", "")
if vstripped in ['RM-2P-1S1D', 'RM-2P-2S',

'RM-2P-2S1D', 'RM-2P-1S2D', 'RM-2P-3S',
]:

res['SM'] = 'EN'
else:

res['SM'] = 'NO'
add to svp64 csvs
for k in ['in1', 'in2', 'in3', 'out', 'CR in', 'CR out']:
del res[k]
if res['0'] != 'TODO':
for k in res:

if k == 'CONDITIONS':
continue

if res[k] == 'NONE' or res[k] == '':
res[k] = '0'

svp64[value].append(res)
also add to by-CSV version
csv_fname = insn_to_csv[insn_name]
csvs_svp64[csv_fname].append(res)

print('')

now write out the csv files
for value, csv in svp64.items():

if value == '-':
continue
from time import sleep
print("WARNING, filename '-' should NOT exist. instrs missing")
print("TODO: fix this (and put in the bugreport number here)")
sleep(2)

APPENDIX E. SIMPLE-V ANALYSIS 234

print out svp64 tables by category
print("## %s" % value)
print('')
cols = csvcols + ['out2']
print(tformat(cols))
print(tformat([" - "] * (len(cols))))
for d in csv:

row = []
for k in cols:

row.append(d[k])
print(tformat(row))

print('')

#csvcols = ['insn', 'Ptype', 'Etype', '0', '1', '2', '3']
write_csv("%s.csv" % value, csv, csvcols + ['out2'])

okaaay, now we re-read them back in for producing microwatt SV

get SVP64 augmented CSV files
svt = SVP64RM(microwatt_format=True)
Expand that (all .csv files)
pth = find_wiki_file("*.csv")

Ignore those containing: valid test sprs
for fname in glob_valid_csvs(pth):

svp64_csv = svt.get_svp64_csv(fname)

csvcols = ['insn', 'mode', 'Ptype', 'Etype', 'SM']
csvcols += ['in1', 'in2', 'in3', 'out', 'out2', 'CR in', 'CR out']

if format is Format.VHDL:
and a nice microwatt VHDL file
file_path = find_wiki_file("sv_decode.vhdl")

elif format is Format.BINUTILS:
file_path = find_wiki_file("binutils.c")

with open(file_path, 'w') as stream:
output(format, svt, csvcols, insns, csvs_svp64, stream)

def output_autogen_disclaimer(format, stream):
lines = (

"this file is auto-generated, do not edit",
"http://libre-soc.org/openpower/sv_analysis.py",
"part of Libre-SOC, sponsored by NLnet",

)
for line in format.wrap_comment(lines):

stream.write(line)
stream.write("\n")

stream.write("\n")

def output(format, svt, csvcols, insns, csvs_svp64, stream):
lens = {

'major': 63,

APPENDIX E. SIMPLE-V ANALYSIS 235

'minor_4': 63,
'minor_19': 7,
'minor_30': 15,
'minor_31': 1023,
'minor_58': 63,
'minor_59': 31,
'minor_62': 63,
'minor_63l': 511,
'minor_63h': 16,

}

def svp64_canonicalize(item):
(value, csv) = item
value = value.lower().replace("-", "_")
return (value, csv)

csvs_svp64_canon = dict(map(svp64_canonicalize, csvs_svp64.items()))

disclaimer
output_autogen_disclaimer(format, stream)

declarations
for line in format.declarations(csvs_svp64_canon.keys(), lens):

stream.write(f"{line}\n")

definitions
sv_cols = ['sv_in1', 'sv_in2', 'sv_in3', 'sv_out', 'sv_out2',

'sv_cr_in', 'sv_cr_out']
fullcols = csvcols + sv_cols

entries_svp64 = defaultdict(list)
for (value, csv) in filter(lambda kv: kv[0] in lens, csvs_svp64_canon.items()):

for entry in csv:
insn = str(entry['insn'])
condition = str(entry['CONDITIONS'])
mode = str(entry['mode'])
sventry = svt.svp64_instrs.get(insn, None)
if sventry is not None:

sventry['mode'] = mode
op = insns[(insn, condition)]['opcode']
binary-to-vhdl-binary
if op.startswith("0b"):

op = "2#%s#" % op[2:]
row = []
for colname in csvcols[1:]:

re = entry[colname]
zero replace with NONE
if re == '0':

re = 'NONE'
1/2 predication
re = re.replace("1P", "P1")
re = re.replace("2P", "P2")
row.append(re)

#print("sventry", sventry)
for colname in sv_cols:

APPENDIX E. SIMPLE-V ANALYSIS 236

if sventry is None:
re = 'NONE'

else:
re = sventry[colname]

row.append(re)
entries_svp64[value].append((op, insn, row))

for line in format.definitions(entries_svp64, fullcols):
stream.write(f"{line}\n")

def main():
import os
os.environ['SILENCELOG'] = '1'
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--format",

type=Format, choices=Format, default=Format.VHDL,
help="format to be used (binutils or VHDL)")

args = parser.parse_args()
process_csvs(args.format)

if __name__ == '__main__':
don't do anything other than call main() here, cuz this code is bypassed
by the sv_analysis command created by setup.py
main()

Appendix F

SVP64 Augmentation Table

237

APPENDIX F. SVP64 AUGMENTATION TABLE 238

F
.1

D
ra
ft

SV
P
64

P
ow

er
IS
A

re
gi
st
er

’p
ro
fil
e’
s

th
is

pa
ge

is
au

to
-g
en

er
at
ed

,
do

no
t
ed

it
cr
ea
te
d
by

ht
tp
:/
/l
ib
re
-s
oc
.o
rg
/o
pe

np
ow

er
/s
v_

an
al
ys
is
.p
y

F
.2

m
ap

to
ol
d
SV

P
re
fix

in
te
rn
al

ke
y

pu
bl
ic

na
m
e

LD
ST

-1
R
-1
W

-i
m
m

LD
ST

R
M
-2
P
-1
S1

D
LD

ST
-1
R
-2
W

-i
m
m

LD
ST

R
M
-2
P
-1
S2

D
LD

ST
-2
R

-
LD

ST
-2
R
-i
m
m

LD
ST

R
M
-2
P
-2
S

LD
ST

-2
R
-1
W

LD
ST

R
M
-2
P
-2
S1

D
LD

ST
-2
R
-1
W

-i
m
m

LD
ST

R
M
-2
P
-2
S1

D
LD

ST
-2
R
-2
W

LD
ST

R
M
-2
P
-2
S1

D
LD

ST
-2
R
-2
W

-i
m
m

-
LD

ST
-3
R

LD
ST

R
M
-2
P
-3
S

LD
ST

-3
R
-C

R
o

LD
ST

R
M
-2
P
-3
S

LD
ST

-3
R
-1
W

LD
ST

R
M
-2
P
-2
S1

D
no

n-
SV

im
m

no
n-
SV

C
R
o

-
C
R
io

R
M
-2
P
-1
S1

D
C
R
=
2R

1W
R
M
-1
P
-2
S1

D
1W

no
n-
SV

1W
-i
m
m

R
M
-1
P
-1
D

1W
-C

R
o

R
M
-1
P
-1
D

1W
-C

R
i

R
M
-2
P
-1
S1

D
1W

-C
R
i

R
M
-2
P
-1
S1

D
1R

no
n-
SV

1R
-i
m
m

R
M
-1
P
-1
S

1R
-C

R
o

R
M
-2
P
-1
S1

D
1R

-C
R
o

R
M
-2
P
-1
S1

D
1R

-C
R
io

R
M
-2
P
-2
S1

D
1R

-1
W

R
M
-2
P
-1
S1

D
1R

-1
W

-i
m
m

R
M
-2
P
-1
S1

D
1R

-1
W

-C
R
o

R
M
-2
P
-1
S1

D
1R

-1
W

-C
R
o

R
M
-2
P
-1
S1

D
2R

no
n-
SV

2R
-C

R
o

R
M
-1
P
-2
S1

D
2R

-1
W

R
M
-1
P
-2
S1

D
2R

-1
W

-C
R
o

R
M
-1
P
-2
S1

D
2R

-1
W

-C
R
o

R
M
-1
P
-2
S1

D
2R

-1
W

-C
R
i

R
M
-1
P
-3
S1

D
3R

-1
W

-C
R
o

R
M
-1
P
-3
S1

D

F
.3

ke
ys

APPENDIX F. SVP64 AUGMENTATION TABLE 239

un
it

in
ou

tc
nt

C
R

in
C
R

ou
t

im
m

im
m
s

na
m
e

LD
ST

1
1

0
0

1
D
S/

SI
LD

ST
-1
R
-1
W

-i
m
m

LD
ST

1
2

0
0

1
D
S/

SI
LD

ST
-1
R
-2
W

-i
m
m

LD
ST

2
0

0
0

LD
ST

-2
R

LD
ST

2
0

0
0

1
D
S/

SI
LD

ST
-2
R
-i
m
m

LD
ST

2
1

0
0

LD
ST

-2
R
-1
W

LD
ST

2
1

0
0

1
D
S/

SI
/S

V
D

LD
ST

-2
R
-1
W

-i
m
m

LD
ST

2
2

0
0

LD
ST

-2
R
-2
W

LD
ST

2
2

0
0

1
SV

D
LD

ST
-2
R
-2
W

-i
m
m

LD
ST

3
0

0
0

LD
ST

-3
R

LD
ST

3
0

0
1

LD
ST

-3
R
-C

R
o

LD
ST

3
1

0
0

LD
ST

-3
R
-1
W

O
T
H
E
R

0
0

0
0

O
T
H
E
R

0
0

0
0

1
LI

im
m

O
T
H
E
R

0
0

0
1

C
R
o

O
T
H
E
R

0
0

1
1

C
R
io

O
T
H
E
R

0
0

1
1

1
O
T
H
E
R

0
1

0
0

1W
O
T
H
E
R

0
1

0
0

1
U
I

1W
-i
m
m

O
T
H
E
R

0
1

0
1

1W
-C

R
o

O
T
H
E
R

0
1

1
0

1W
-C

R
i

O
T
H
E
R

0
1

1
0

1
B
D

1W
-C

R
i

O
T
H
E
R

1
0

0
0

1R
O
T
H
E
R

1
0

0
0

1
SI

1R
-i
m
m

O
T
H
E
R

1
0

0
1

1R
-C

R
o

O
T
H
E
R

1
0

0
1

1
SI
/U

I
1R

-C
R
o

O
T
H
E
R

1
0

1
1

1R
-C

R
io

O
T
H
E
R

1
1

0
0

1R
-1
W

O
T
H
E
R

1
1

0
0

1
SI
/U

I
1R

-1
W

-i
m
m

O
T
H
E
R

1
1

0
1

1R
-1
W

-C
R
o

O
T
H
E
R

1
1

0
1

1
M
1/
SH

/S
H
32
/S

I/
U
I/
X
B
I

1R
-1
W

-C
R
o

O
T
H
E
R

2
0

0
0

2R
O
T
H
E
R

2
0

0
1

2R
-C

R
o

O
T
H
E
R

2
1

0
0

2R
-1
W

O
T
H
E
R

2
1

0
1

2R
-1
W

-C
R
o

O
T
H
E
R

2
1

0
1

1
SH

/S
H
32

2R
-1
W

-C
R
o

O
T
H
E
R

2
1

1
0

2R
-1
W

-C
R
i

O
T
H
E
R

3
1

0
1

3R
-1
W

-C
R
o

F
.3
.1

LD
ST

-1
R
-1
W

-i
m
m

(L
D
ST

R
M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

32
lw

z
~S

V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

34
lb
z

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

40
lh
z

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

42
lh
a

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

48
lfs

~S
V
P
64

B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

50
lfd

~S
V
P
64
B
R
E
V

D
-F
or
m

m
in
or
_
58
.c
sv

0
ld

D
S-
Fo

rm

APPENDIX F. SVP64 AUGMENTATION TABLE 240

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
58
.c
sv

2
lw
a

D
S-
Fo

rm

F
.3
.2

LD
ST

-1
R
-2
W

-i
m
m

(L
D
ST

R
M
-2
P
-1
S2

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

33
lw

zu
~S

V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

35
lb
zu

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

41
lh
zu

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

43
lh
au

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

49
lfs
u

~S
V
P
64
B
R
E
V

D
-F
or
m

m
aj
or
.c
sv

51
lfd

u
~S

V
P
64
B
R
E
V

D
-F
or
m

m
in
or
_
58
.c
sv

1
ld
u

D
S-
Fo

rm

F
.3
.3

LD
ST

-2
R

(-
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
11

11
11
01
10

dc
bz

X
-F
or
m

F
.3
.4

LD
ST

-2
R
-i
m
m

(L
D
ST

R
M
-2
P
-2
S)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

36
st
w

D
-F
or
m

m
aj
or
.c
sv

38
st
b

D
-F
or
m

m
aj
or
.c
sv

44
st
h

D
-F
or
m

m
aj
or
.c
sv

52
st
fs

D
-F
or
m

m
aj
or
.c
sv

54
st
fd

D
-F
or
m

m
in
or
_
62
.c
sv

0
st
d

D
S-
Fo

rm

F
.3
.5

LD
ST

-2
R
-1
W

(L
D
ST

R
M
-2
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
00
01

01
00

lw
ar
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
01

01
01

ld
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
01

01
11

lw
zx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
11

01
00

lb
ar
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01
01

01
00

ld
ar
x

X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 241

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
01
01

01
11

lb
zx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01
11

01
00

lh
ar
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
01

01
11

lh
zx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01
01

01
01

lw
ax

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01
01

01
11

lh
ax

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00
01

01
00

ld
br
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00
01

01
10

lw
br
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00
01

01
11

lfs
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01
01

01
11

lfd
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00
01

01
01

lw
zc
ix

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00
01

01
10

lh
br
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00
11

01
01

lh
zc
ix

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01
01

01
01

lb
zc
ix

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01
01

01
11

lfi
w
ax

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01
11

01
01

ld
ci
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01
11

01
11

lfi
w
zx

X
-F
or
m

F
.3
.6

LD
ST

-2
R
-1
W

-i
m
m

(L
D
ST

R
M
-2
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

32
lw

z
SV

P
64

B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

34
lb
z

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

37
st
w
u

D
-F
or
m

m
aj
or
.c
sv

39
st
bu

D
-F
or
m

m
aj
or
.c
sv

40
lh
z

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

42
lh
a

SV
P
64

B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

45
st
hu

D
-F
or
m

m
aj
or
.c
sv

48
lfs

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

50
lfd

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

53
st
fs
u

D
-F
or
m

m
aj
or
.c
sv

55
st
fd
u

D
-F
or
m

m
in
or
_
62
.c
sv

1
st
du

D
S-
Fo

rm

F
.3
.7

LD
ST

-2
R
-2
W

(L
D
ST

R
M
-2
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00

00
11
01
01

ld
ux

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

00
11
01
11

lw
zu

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

01
11
01
11

lb
zu

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01

00
11
01
11

lh
zu

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01

01
11
01
01

lw
au

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01

01
11
01
11

lh
au

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10

00
11
01
11

lfs
ux

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10

01
11
01
11

lfd
ux

X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 242

F
.3
.8

LD
ST

-2
R
-2
W

-i
m
m

(-
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

33
lw

zu
SV

P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

35
lb
zu

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

41
lh
zu

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

43
lh
au

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

49
lfs
u

SV
P
64
B
R
E
V

SV
D
-F
or
m

m
aj
or
.c
sv

51
lfd

u
SV

P
64
B
R
E
V

SV
D
-F
or
m

F
.3
.9

LD
ST

-3
R

(L
D
ST

R
M
-2
P
-3
S)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
10

01
01
01

st
dx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

01
01
11

st
w
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

01
01
11

st
bx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

01
01
11

st
hx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

01
01
00

st
db

rx
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

01
01
10

st
w
br
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

01
01
11

st
fs
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

01
01
11

st
fd
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

01
01
01

st
w
ci
x

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

01
01
10

st
hb

rx
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

11
01
01

st
hc

ix
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

01
01
01

st
bc

ix
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

01
01
11

st
fiw

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

11
01
01

st
dc

ix
X
-F
or
m

F
.3
.1
0

LD
ST

-3
R
-C

R
o
(L
D
ST

R
M
-2
P
-3
S)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
10

01
01
10

st
w
cx

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

01
01
10

st
dc

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

11
01
10

st
bc

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

01
01
10

st
hc

x
X
-F
or
m

F
.3
.1
1

LD
ST

-3
R
-1
W

(L
D
ST

R
M
-2
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
10

11
01
01

st
du

x
X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 243

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
10

11
01
11

st
w
ux

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

11
01
11

st
bu

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

11
01
11

st
hu

x
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

11
01
11

st
fs
ux

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

11
01
11

st
fd
ux

X
-F
or
m

F
.3
.1
2

(n
on

-S
V
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

ex
tr
a.
cs
v

00
00

00
—

—
—
—

—
01
00

00
00
00
-

at
tn

N
O
N
E
-F
or
m

ex
tr
a.
cs
v

01
10

00
00
00
00
00
00
00
00
00
00
00
00
00
00

no
p

D
-F
or
m

m
aj
or
.c
sv

17
sc

SC
-F
or
m

m
in
or
_
19
.c
sv

0b
00
10
01
01
10

is
yn

c
X
L-
Fo

rm
m
in
or
_
19
_
00
00
0.
cs
v

0b
00
01
0

ad
d
pc

is
no

t
im

pl
em

en
te
d
ye
t

D
X
-F
or
m

m
in
or
_
22
.c
sv

—
–0
11
00
1

sv
sh
ap

e
SV

M
-F
or
m

m
in
or
_
22
.c
sv

—
–1
01
00
1

sv
in
de

x
SV

I-
Fo

rm
m
in
or
_
22
.c
sv

—
–1
11
00
1

sv
re
m
ap

SV
R
M
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
01
01
10

ic
bt

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
01
11
10

w
ai
t

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00
11
01
10

dc
bs
t

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01
01
01
10

dc
bf

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11
11
01
10

dc
bt
st

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
01
01
10

dc
bt

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11
11
00
10

sl
bi
a

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00
11
01
10

tl
bs
yn

c
X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01
01
01
10

sy
nc

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01
01
01
10

ei
ei
o

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11
01
01
10

ic
bi

X
-F
or
m

F
.3
.1
3

im
m

(n
on

-S
V
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

18
b

I-
Fo

rm

F
.3
.1
4

C
R
o
(-
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

00
00
10
01
10

1/
6=

m
tf
sb
1

X
-F
or
m

m
in
or
_
63
.c
sv

00
01
00
00
00

2/
0=

m
cr
fs

X
-F
or
m

m
in
or
_
63
.c
sv

00
01
00
01
10

2/
6=

m
tf
sb
0

X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 244

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

00
10
00
01
10

4/
6=

m
tf
sfi

X
-F
or
m

F
.3
.1
5

C
R
io

(R
M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
19
.c
sv

0b
00
00
00

00
00

m
cr
f

X
L-
Fo

rm

F
.3
.1
6

C
R
=
2R

1W
(R

M
-1
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
19
.c
sv

0b
00

00
10
00
01

cr
no

r
X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
00

10
00
00
01

cr
an

dc
X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
00

11
00
00
01

cr
xo

r
X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
00

11
10
00
01

cr
na

nd
X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
01

00
00
00
01

cr
an

d
X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
01

00
10
00
01

cr
eq
v

X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
01

10
10
00
01

cr
or
c

X
L-
Fo

rm
m
in
or
_
19
.c
sv

0b
01

11
00
00
01

cr
or

X
L-
Fo

rm

F
.3
.1
7

1W
(n
on

-S
V
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

ex
tr
a.
cs
v

00
00
01
—

—
—

—
—

00
00
00
00
11
-

si
m
_
cf
g

N
O
N
E
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

01
00
11

m
fm

sr
X
-F
or
m

F
.3
.1
8

1W
-i
m
m

(R
M
-1
P
-1
D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
22
.c
sv

—
–0

00
11
-

fm
vi
s

D
X
-F
or
m

F
.3
.1
9

1W
-C

R
o
(R

M
-1
P
-1
D
)

APPENDIX F. SVP64 AUGMENTATION TABLE 245

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
22
.c
sv

—
–1

00
11
-

sv
st
ep

SV
L-
Fo

rm

F
.3
.2
0

1W
-C

R
i
(R

M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
19
.c
sv

0b
00

00
01
00
00

bc
lr

X
L-
Fo

rm
m
in
or
_
31
.c
sv

0b
00

00
01
00
11

m
fc
r/
m
fo
cr
f

X
F
X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

10
00
00
00

se
tb

V
X
-F
or
m

F
.3
.2
1

1W
-C

R
i
(R

M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

16
bc

B
-F
or
m

F
.3
.2
2

1R
(n
on

-S
V
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
10
01

00
10

m
tm

sr
X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10
11

00
10

m
tm

sr
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
01

00
10

tl
bi
el

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
11

00
10

tl
bi
e

X
-F
or
m

F
.3
.2
3

1R
-i
m
m

(R
M
-1
P
-1
S)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

2
td
i

D
-F
or
m

m
aj
or
.c
sv

3
tw

i
D
-F
or
m

F
.3
.2
4

1R
-C

R
o
(R

M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

00
10
10
00
00

5/
0=

ft
sq
rt

X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 246

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

10
11
00
01
11

22
/7
=
m
tf
sf

X
-F
or
m

F
.3
.2
5

1R
-C

R
o
(R

M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

10
cm

pl
i

D
-F
or
m

m
aj
or
.c
sv

11
cm

pi
D
-F
or
m

F
.3
.2
6

1R
-C

R
io

(R
M
-2
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00

10
01
00
00

m
tc
rf
/m

to
cr
f

X
F
X
-F
or
m

F
.3
.2
7

1R
-1
W

(R
M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
01

10
10
00

ne
g

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

11
10
10

po
pc

nt
b

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

01
10
10

pr
ty
w

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

11
10
10

pr
ty
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

01
10
10

cd
tb
cd

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

11
10
10

cb
cd

td
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01

01
00
11

m
fs
pr

X
F
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01

11
10
10

po
pc

nt
w

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

01
00
11

m
ts
pr

X
F
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

11
10
10

po
pc

nt
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01

10
10
00

ne
go

X
O
-F
or
m

F
.3
.2
8

1R
-1
W

-i
m
m

(R
M
-2
P
-1
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

12
ad

di
c

D
-F
or
m

m
aj
or
.c
sv

14
ad

di
D
-F
or
m

m
aj
or
.c
sv

15
ad

di
s

D
-F
or
m

m
aj
or
.c
sv

24
or
i

D
-F
or
m

m
aj
or
.c
sv

25
or
is

D
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 247

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

26
xo

ri
D
-F
or
m

m
aj
or
.c
sv

27
xo

ri
s

D
-F
or
m

m
aj
or
.c
sv

8
su
bfi

c
D
-F
or
m

m
in
or
_
22
.c
sv

—
–0

10
11
-

fis
hm

v
D
X
-F
or
m

F
.3
.2
9

1R
-1
W

-C
R
o
(R

M
-2
P
-1
S1

D
) C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00

00
01
10
10

cn
tl
zw

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

00
11
10
10

cn
tl
zd

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

11
00
10
00

su
bf
ze

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00

11
00
10
10

ad
dz

e
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10

00
01
10
10

cn
tt
zw

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10

00
11
10
10

cn
tt
zd

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10

11
00
10
00

su
bf
ze
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10

11
00
10
10

ad
dz

eo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11

10
01
10
10

ex
ts
h

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11

10
11
10
10

ex
ts
b

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11

11
01
10
10

ex
ts
w

X
-F
or
m

m
in
or
_
59
.c
sv

—
–1

01
10

fs
qr
ts

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1

10
00

fr
es

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1

10
10

fr
sq
rt
es

A
-F
or
m

m
in
or
_
59
.c
sv

10
00
00
11
10

fs
in
s

X
-F
or
m

m
in
or
_
59
.c
sv

10
00
10
11
10

fc
os
s

X
-F
or
m

m
in
or
_
59
.c
sv

11
01
00
11
10

fc
fid

s
X
-F
or
m

m
in
or
_
59
.c
sv

11
11
00
11
10

fc
fid

us
X
-F
or
m

m
in
or
_
63
.c
sv

—
–1

01
10

fs
qr
t

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1

10
00

fr
e

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1

10
10

fr
sq
rt
e

A
-F
or
m

m
in
or
_
63
.c
sv

00
00
00
11
00

0/
12
=
fr
sp

X
-F
or
m

m
in
or
_
63
.c
sv

00
00
00
11
10

0/
14
=
fc
ti
w

X
-F
or
m

m
in
or
_
63
.c
sv

00
00
00
11
11

0/
15
=
fc
ti
w
z

X
-F
or
m

m
in
or
_
63
.c
sv

00
00
10
10
00

1/
8=

fn
eg

X
-F
or
m

m
in
or
_
63
.c
sv

00
01
00
10
00

2/
8=

fm
r

X
-F
or
m

m
in
or
_
63
.c
sv

00
10
00
10
00

4/
8=

fn
ab

s
X
-F
or
m

m
in
or
_
63
.c
sv

00
10
00
11
10

4/
14
=
fc
ti
w
u

X
-F
or
m

m
in
or
_
63
.c
sv

00
10
00
11
11

4/
15
=
fc
ti
w
uz

X
-F
or
m

m
in
or
_
63
.c
sv

01
00
00
10
00

8/
8=

fa
bs

X
-F
or
m

m
in
or
_
63
.c
sv

01
10
00
10
00

12
/8
=
fr
in

X
-F
or
m

m
in
or
_
63
.c
sv

01
10
10
10
00

13
/8
=
fr
iz

X
-F
or
m

m
in
or
_
63
.c
sv

01
11
00
10
00

14
/8
=
fr
ip

X
-F
or
m

m
in
or
_
63
.c
sv

01
11
10
10
00

15
/8
=
fr
im

X
-F
or
m

m
in
or
_
63
.c
sv

10
01
00
01
11

18
/7
=
m
ffs

X
-F
or
m

m
in
or
_
63
.c
sv

11
00
10
11
10

25
/1
4=

fc
ti
d

X
-F
or
m

m
in
or
_
63
.c
sv

11
00
10
11
11

25
/1
5=

fc
ti
dz

X
-F
or
m

m
in
or
_
63
.c
sv

11
01
00
11
10

26
/1
4=

fc
fid

X
-F
or
m

m
in
or
_
63
.c
sv

11
10
10
11
10

29
/1
4=

fc
ti
du

X
-F
or
m

m
in
or
_
63
.c
sv

11
10
10
11
11

29
/1
5=

fc
ti
du

z
X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 248

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

11
11
00
11
10

30
/1
4=

fc
fid

u
X
-F
or
m

F
.3
.3
0

1R
-1
W

-C
R
o
(R

M
-2
P
-1
S1

D
) C

SV
op

co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

13
ad

di
c.

D
-F
or
m

m
aj
or
.c
sv

21
rl
w
in
m

M
-F
or
m

m
aj
or
.c
sv

28
an

di
.

B
-F
or
m

m
aj
or
.c
sv

29
an

di
s.

B
-F
or
m

m
aj
or
.c
sv

7
m
ul
li

D
-F
or
m

m
in
or
_
30
.c
sv

0b
00
00

rl
di
cl

M
D
S-
Fo

rm
m
in
or
_
30
.c
sv

0b
00
01

rl
di
cl

M
D
S-
Fo

rm
m
in
or
_
30
.c
sv

0b
00
10

rl
di
cr

M
D
-F
or
m

m
in
or
_
30
.c
sv

0b
00
11

rl
di
cr

M
D
-F
or
m

m
in
or
_
30
.c
sv

0b
01
00

rl
di
c

M
D
-F
or
m

m
in
or
_
30
.c
sv

0b
01
01

rl
di
c

M
D
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

10
10
00

su
bf
m
e

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

10
10
10

ad
dm

e
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

10
10
00

su
bf
m
eo

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

10
10
10

ad
dm

eo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

11
10
00

sr
aw

i
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

11
10
10

sr
ad

i
X
S-
Fo

rm
m
in
or
_
31
.c
sv

0b
11
00

11
10
11

sr
ad

i
X
S-
Fo

rm
m
in
or
_
31
.c
sv

0b
11
01

11
10
10

ex
ts
w
sl
i

X
S-
Fo

rm
m
in
or
_
31
.c
sv

0b
11
01

11
10
11

ex
ts
w
sl
i

X
S-
Fo

rm
m
in
or
_
5.
cs
v

-0
11
01
01
10
-

gr
ev
i

X
B
-F
or
m

m
in
or
_
5.
cs
v

00
11
11
01
10
-

gr
ev
w
i

X
-F
or
m

F
.3
.3
1

2R
(n
on

-S
V
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
00

00
01
00

tw
X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

00
01
00

td
X
-F
or
m

F
.3
.3
2

2R
-C

R
o
(R

M
-1
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00

00
00
00
00

cm
p

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

00
10
00
00

cm
pl

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00

11
00
00
00

cm
pr
b

X
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 249

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00

11
10
00
00

cm
pe

qb
X
-F
or
m

m
in
or
_
63
.c
sv

00
00
00
00
00

0/
0=

fc
m
pu

X
-F
or
m

m
in
or
_
63
.c
sv

00
00
10
00
00

1/
0=

fc
m
po

X
-F
or
m

m
in
or
_
63
.c
sv

00
10
00
00
00

4/
0=

ft
di
v

X
-F
or
m

F
.3
.3
3

2R
-1
W

(R
M
-1
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
22
.c
sv

—
—

10
00
1

bm
as
k

B
M
2-
Fo

rm
m
in
or
_
31
.c
sv

0b
00
11
11

11
00

bp
er
m
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
00

10
01

m
od

ud
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00
00

10
11

m
od

uw
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11
11

11
00

cm
pb

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00
00

10
01

m
od

sd
X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00
00

10
11

m
od

sw
X
-F
or
m

m
in
or
_
63
.c
sv

11
01

00
01
10

26
/6
=
fm

rg
ow

X
-F
or
m

m
in
or
_
63
.c
sv

11
11

00
01
10

30
/6
=
fm

rg
ew

X
-F
or
m

F
.3
.3
4

2R
-1
W

-C
R
o
(R

M
-1
P
-2
S1

D
) C

SV
op

co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

23
rl
w
nm

M
-F
or
m

m
in
or
_
22
.c
sv

00
01

00
11
10
-

m
in
u

X
-F
or
m

m
in
or
_
22
.c
sv

00
11

00
11
10
-

m
ax

u
X
-F
or
m

m
in
or
_
22
.c
sv

01
01

00
11
10
-

m
in
s

X
-F
or
m

m
in
or
_
22
.c
sv

01
10

00
11
10
-

cp
ro
p

X
-F
or
m

m
in
or
_
22
.c
sv

01
11

00
11
10
-

m
ax

s
X
-F
or
m

m
in
or
_
22
.c
sv

10
01

11
01
10
-

ab
sd
s

X
-F
or
m

m
in
or
_
22
.c
sv

10
11

11
01
10
-

ab
sd
u

X
-F
or
m

m
in
or
_
22
.c
sv

11
01

00
11
10
-

av
ga
dd

X
-F
or
m

m
in
or
_
30
.c
sv

0b
10
00

rl
dc

l
M
D
-F
or
m

m
in
or
_
30
.c
sv

0b
10
01

rl
dc

r
M
D
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

00
10
00

su
bf
c

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

00
10
01

m
ul
hd

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

00
10
10

ad
dc

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

00
10
11

m
ul
hw

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

01
10
00

sl
w

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

01
10
11

sl
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

01
11
00

an
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

10
10
00

su
bf

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

11
11
00

an
dc

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

00
10
01

m
ul
hd

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

00
10
10

ad
dg

6s
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

00
10
11

m
ul
hw

X
O
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 250

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
01

11
11
00

no
r

X
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

00
10
00

su
bf
e

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

00
10
10

ad
de

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

10
10
01

m
ul
ld

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

10
10
11

m
ul
lw

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

00
10
10

ad
d

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

01
11
00

eq
v

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

11
11
00

xo
r

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

00
10
01

di
vd

eu
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

00
10
11

di
vw

eu
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

01
11
00

or
c

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

10
10
01

di
vd

e
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

10
10
11

di
vw

e
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

11
11
00

or
X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

00
10
01

di
vd

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

00
10
11

di
vw

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

01
11
00

na
nd

X
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

10
10
01

di
vd

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

10
10
11

di
vw

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

00
10
00

su
bf
co

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

00
10
01

m
ul
hd

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

00
10
10

ad
dc

o
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

00
10
11

m
ul
hw

u
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

01
10
00

sr
w

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

01
10
11

sr
d

X
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

10
10
00

su
bf
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01

00
10
01

m
ul
hd

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01

00
10
11

m
ul
hw

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

00
10
00

su
bf
eo

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

00
10
10

ad
de

o
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

10
10
01

m
ul
ld
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

10
10
11

m
ul
lw
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

00
10
10

ad
do

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

01
10
00

sr
aw

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

01
10
10

sr
ad

X
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

00
10
01

di
vd

eu
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

00
10
11

di
vw

eu
o

X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

10
10
01

di
vd

eo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

10
10
11

di
vw

eo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

00
10
01

di
vd

uo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

00
10
11

di
vw

uo
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

10
10
01

di
vd

o
X
O
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

10
10
11

di
vw

o
X
O
-F
or
m

m
in
or
_
5.
cs
v

00
10
01
01
10
-

gr
ev

X
-F
or
m

m
in
or
_
5.
cs
v

00
10
11
01
10
-

gr
ev
w

X
-F
or
m

m
in
or
_
59
.c
sv

—
–0
11
01

ffa
dd

s
A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
00
10

fd
iv
s

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
01
00

fs
ub

s
A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
01
01

fa
dd

s
A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
10
01

fm
ul
s

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
00
10

fd
iv

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
01
00

fs
ub

A
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 251

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
63
.c
sv

—
–1
01
01

fa
dd

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
10
01

fm
ul

A
-F
or
m

m
in
or
_
63
.c
sv

00
00

00
10
00

0/
8=

fc
ps
gn

X
-F
or
m

F
.3
.3
5

2R
-1
W

-C
R
o
(R

M
-1
P
-2
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
aj
or
.c
sv

20
rl
w
im

i
M
-F
or
m

m
in
or
_
30
.c
sv

0b
01

10
rl
di
m
i

M
D
-F
or
m

m
in
or
_
30
.c
sv

0b
01

11
rl
di
m
i

M
D
-F
or
m

F
.3
.3
6

2R
-1
W

-C
R
i
(R

M
-1
P
-3
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
00
00

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
00

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
01

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
10

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
00
11

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
00

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
01

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
10

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
01
11

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
00

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
01

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
10

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
10
11

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
00

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
01

10
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
10

10
11
11

is
el

A
-F
or
m

APPENDIX F. SVP64 AUGMENTATION TABLE 252

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
31
.c
sv

0b
11
11

00
11
11

is
el

A
-F
or
m

m
in
or
_
31
.c
sv

0b
11
11

10
11
11

is
el

A
-F
or
m

F
.3
.3
7

3R
-1
W

-C
R
o
(R

M
-1
P
-3
S1

D
)

C
SV

op
co
de

as
m

fla
gs

fo
rm

m
in
or
_
22
.c
sv

01
11
11
01
10
-

ab
sd
ac
s

X
-F
or
m

m
in
or
_
22
.c
sv

11
11
11
01
10
-

ab
sd
ac
u

X
-F
or
m

m
in
or
_
5.
cs
v

—
—

–0
0-

te
rn
lo
gi

T
LI
-F
or
m

m
in
or
_
59
.c
sv

—
–0
01

00
ffm

su
bs

A
-F
or
m

m
in
or
_
59
.c
sv

—
–0
01

01
ffm

ad
ds

A
-F
or
m

m
in
or
_
59
.c
sv

—
–0
01

10
ffn

m
su
bs

A
-F
or
m

m
in
or
_
59
.c
sv

—
–0
01

11
ffn

m
ad

ds
A
-F
or
m

m
in
or
_
59
.c
sv

—
–0
11

11
fd
m
ad

ds
A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
11

00
fm

su
bs

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
11

01
fm

ad
ds

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
11

10
fn
m
su
bs

A
-F
or
m

m
in
or
_
59
.c
sv

—
–1
11

11
fn
m
ad

ds
A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
01

11
fs
el

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
11

00
fm

su
b

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
11

01
fm

ad
d

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
11

10
fn
m
su
b

A
-F
or
m

m
in
or
_
63
.c
sv

—
–1
11

11
fn
m
ad

d
A
-F
or
m

F
.4

sv
p6

4
re
m
ap

s
•

L
D

S
T

-1
R

-1
W

-i
m

m
:
LD

ST
R
M
-2
P
-1
S1

D
•

L
D

S
T

-1
R

-2
W

-i
m

m
:
LD

ST
R
M
-2
P
-1
S2

D
•

L
D

S
T

-2
R
:
-

•
L

D
S

T
-2

R
-i

m
m
:
LD

ST
R
M
-2
P
-2
S

•
L

D
S

T
-2

R
-1

W
:
LD

ST
R
M
-2
P
-2
S1

D
•

L
D

S
T

-2
R

-1
W

-i
m

m
:
LD

ST
R
M
-2
P
-2
S1

D
•

L
D

S
T

-2
R

-2
W

:
LD

ST
R
M
-2
P
-2
S1

D
•

L
D

S
T

-2
R

-2
W

-i
m

m
:
-

•
L

D
S

T
-3

R
:
LD

ST
R
M
-2
P
-3
S

•
L

D
S

T
-3

R
-C

R
o:

LD
ST

R
M
-2
P
-3
S

•
L

D
S

T
-3

R
-1

W
:
LD

ST
R
M
-2
P
-2
S1

D
•

C
R

o:
-

•
C

R
io
:
R
M
-2
P
-1
S1

D
•

C
R

=
2R

1W
:
R
M
-1
P
-2
S1

D
•

1W
-i

m
m
:
R
M
-1
P
-1
D

•
1W

-C
R

o:
R
M
-1
P
-1
D

•
1W

-C
R

i:
R
M
-2
P
-1
S1

D
•

1W
-C

R
i:

R
M
-2
P
-1
S1

D
•

1R
-i

m
m
:
R
M
-1
P
-1
S

APPENDIX F. SVP64 AUGMENTATION TABLE 253

•
1R

-C
R

o:
R
M
-2
P
-1
S1

D
•

1R
-C

R
o:

R
M
-2
P
-1
S1

D
•

1R
-C

R
io
:
R
M
-2
P
-2
S1

D
•

1R
-1

W
:
R
M
-2
P
-1
S1

D
•

1R
-1

W
-i

m
m
:
R
M
-2
P
-1
S1

D
•

1R
-1

W
-C

R
o:

R
M
-2
P
-1
S1

D
•

1R
-1

W
-C

R
o:

R
M
-2
P
-1
S1

D
•

2R
-C

R
o:

R
M
-1
P
-2
S1

D
•

2R
-1

W
:
R
M
-1
P
-2
S1

D
•

2R
-1

W
-C

R
o:

R
M
-1
P
-2
S1

D
•

2R
-1

W
-C

R
o:

R
M
-1
P
-2
S1

D
•

2R
-1

W
-C

R
i:

R
M
-1
P
-3
S1

D
•

3R
-1

W
-C

R
o:

R
M
-1
P
-3
S1

D

F
.4
.1

LD
ST

R
M
-2
P
-1
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

lw
z

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
lb
z

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
lh
z

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
lh
a

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
lfs

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
F
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

F
R
T

0
0

0
lfd

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
3

d:
F
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

F
R
T

0
0

0
ld

LD
ST

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
lw
a

LD
ST

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0

F
.4
.2

LD
ST

R
M
-2
P
-1
S2

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

lw
zu

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

R
A

lb
zu

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

R
A

lh
zu

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

R
A

lh
au

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

R
A

lfs
u

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
F
R
T

d:
R
A

s:
R
A

0
R
A

0
0

F
R
T

0
0

R
A

lfd
u

LD
ST

~S
V
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
F
R
T

d:
R
A

s:
R
A

0
R
A

0
0

F
R
T

0
0

R
A

ld
u

LD
ST

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

R
A

F
.4
.3

LD
ST

R
M
-2
P
-2
S

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

st
w

LD
ST

2P
E
X
T
R
A
3

s:
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
0

st
b

LD
ST

2P
E
X
T
R
A
3

s:
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
0

st
h

LD
ST

2P
E
X
T
R
A
3

s:
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
0

st
fs

LD
ST

2P
E
X
T
R
A
3

s:
F
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
F
R
S

0
0

0
0

APPENDIX F. SVP64 AUGMENTATION TABLE 254

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

st
fd

LD
ST

2P
E
X
T
R
A
3

s:
F
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
F
R
S

0
0

0
0

st
d

LD
ST

2P
E
X
T
R
A
3

s:
R
S

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
0

F
.4
.4

LD
ST

R
M
-2
P
-2
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

lw
ar
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
ld
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lw

zx
LD

ST
2P

E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lb
ar
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
ld
ar
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lb
zx

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lh
ar
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lh
zx

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lw
ax

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lh
ax

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
ld
br
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lw

br
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lfs
x

LD
ST

2P
E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
F
R
T

0
0

0
lfd

x
LD

ST
2P

E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
F
R
T

0
0

0
lw

zc
ix

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lh
br
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lh
zc
ix

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lb
zc
ix

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lfi
w
ax

LD
ST

2P
E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
F
R
T

0
0

0
ld
ci
x

LD
ST

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

0
lfi
w
zx

LD
ST

2P
E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
F
R
T

0
0

0
lw

z
LD

ST
SV

P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

R
T

0
0

0
lb
z

LD
ST

SV
P
64

B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

R
T

0
0

0
st
w
u

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
R
S

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
R
A

st
bu

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
R
S

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
R
A

lh
z

LD
ST

SV
P
64

B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

R
T

0
0

0
lh
a

LD
ST

SV
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

R
T

0
0

0
st
hu

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
R
S

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
R
A

lfs
LD

ST
SV

P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

F
R
T

0
0

0
lfd

LD
ST

SV
P
64
B
R
E
V

2P
E
X
T
R
A
2

d:
F
R
T

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

0
R
C

F
R
T

0
0

0
st
fs
u

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
F
R
S

s:
R
A

0
R
A

0
F
R
S

0
0

0
R
A

st
fd
u

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
F
R
S

s:
R
A

0
R
A

0
F
R
S

0
0

0
R
A

st
du

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
R
S

s:
R
A

0
R
A
_
O
R
_
ZE

R
O

0
R
S

0
0

0
R
A

ld
ux

LD
ST

2P
E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lw
zu

x
LD

ST
2P

E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lb
zu

x
LD

ST
2P

E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lh
zu

x
LD

ST
2P

E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lw
au

x
LD

ST
2P

E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lh
au

x
LD

ST
2P

E
X
T
R
A
2

d:
R
T

d:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

0
0

R
A

lfs
ux

LD
ST

2P
E
X
T
R
A
2

d:
F
R
T

d:
R
A

s:
R
B

0
R
A

R
B

0
F
R
T

0
0

R
A

lfd
ux

LD
ST

2P
E
X
T
R
A
2

d:
F
R
T

d:
R
A

s:
R
B

0
R
A

R
B

0
F
R
T

0
0

R
A

st
du

x
LD

ST
2P

E
X
T
R
A
2

d:
R
A

s:
R
Ss
:R

A
s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
R
A

APPENDIX F. SVP64 AUGMENTATION TABLE 255

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

st
w
ux

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
R
Ss
:R

A
s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
R
A

st
bu

x
LD

ST
2P

E
X
T
R
A
2

d:
R
A

s:
R
Ss
:R

A
s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
R
A

st
hu

x
LD

ST
2P

E
X
T
R
A
2

d:
R
A

s:
R
Ss
:R

A
s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
R
A

st
fs
ux

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
F
R
Ss
:R

A
s:
R
B

0
R
A

R
B

F
R
S

0
0

0
R
A

st
fd
ux

LD
ST

2P
E
X
T
R
A
2

d:
R
A

s:
F
R
Ss
:R

A
s:
R
B

0
R
A

R
B

F
R
S

0
0

0
R
A

F
.4
.5

LD
ST

R
M
-2
P
-3
S

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

st
dx

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
w
x

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
bx

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
hx

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
db

rx
LD

ST
2P

E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
w
br
x

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
fs
x

LD
ST

2P
E
X
T
R
A
2

s:
F
R
S

s:
R
A

s:
R
B

0
R
A

R
B

F
R
S

0
0

0
0

st
fd
x

LD
ST

2P
E
X
T
R
A
2

s:
F
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

F
R
S

0
0

0
0

st
w
ci
x

LD
ST

2P
E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
hb

rx
LD

ST
2P

E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
hc

ix
LD

ST
2P

E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
bc

ix
LD

ST
2P

E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
fiw

x
LD

ST
2P

E
X
T
R
A
2

s:
F
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

F
R
S

0
0

0
0

st
dc

ix
LD

ST
2P

E
X
T
R
A
2

s:
R
S

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

0
0

st
w
cx

LD
ST

2P
E
X
T
R
A
2

s:
R
Sd

:C
R
0

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

C
R
0

0
st
dc

x
LD

ST
2P

E
X
T
R
A
2

s:
R
Sd

:C
R
0

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

C
R
0

0
st
bc

x
LD

ST
2P

E
X
T
R
A
2

s:
R
Sd

:C
R
0

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

C
R
0

0
st
hc

x
LD

ST
2P

E
X
T
R
A
2

s:
R
Sd

:C
R
0

s:
R
A

s:
R
B

0
R
A
_
O
R
_
ZE

R
O

R
B

R
S

0
0

C
R
0

0

F
.4
.6

R
M
-2
P
-1
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

m
cr
f

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
B
F

s:
B
FA

0
0

0
0

0
0

B
FA

B
F

0
bc

lr
B
R
A
N
C
H

2P
E
X
T
R
A
3

d:
B
I

s:
B
I

0
0

SP
R

SP
R

0
SP

R
B
I

0
0

m
fc
r/
m
fo
cr
f

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
C
R

0
0

0
0

0
R
T

W
H
O
LE

_
R
E
G

0
0

se
tb

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
B
FA

0
0

0
0

0
R
T

B
FA

0
0

bc
B
R
A
N
C
H

2P
E
X
T
R
A
3

d:
B
I

s:
B
I

0
0

SP
R

0
0

SP
R

B
I

0
0

5/
0=

ft
sq
rt

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
B
F

s:
F
R
B

0
0

0
F
R
B

0
0

0
B
F

0
22
/7
=
m
tf
sf

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
C
R
1

s:
F
R
B

0
0

0
F
R
B

0
0

0
C
R
1

0
cm

pl
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
B
F

s:
R
A

0
0

R
A

0
0

0
0

B
F

0
cm

pi
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
B
F

s:
R
A

0
0

R
A

0
0

0
0

B
F

0
ne

g
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A

0
0

R
T

0
0

0
po

pc
nt
b

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
pr
ty
w

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
pr
ty
d

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
cd

tb
cd

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0

APPENDIX F. SVP64 AUGMENTATION TABLE 256

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

cb
cd

td
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
m
fs
pr

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
S

s:
SP

R
0

0
SP

R
0

0
R
T

0
0

0
po

pc
nt
w

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
m
ts
pr

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
SP

R
s:
R
S

0
0

R
S

0
0

SP
R

0
0

0
po

pc
nt
d

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
ne

go
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A

0
0

R
T

0
0

0
ad

di
c

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A

0
0

R
T

0
0

0
ad

di
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
ad

di
s

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A
_
O
R
_
ZE

R
O

0
0

R
T

0
0

0
or
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
or
is

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
xo

ri
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
xo

ri
s

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A

s:
R
S

0
0

R
S

0
0

R
A

0
0

0
su
bfi

c
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T

s:
R
A

0
0

R
A

0
0

R
T

0
0

0
fis
hm

v
N
O
R
M
A
L

2P
E
X
T
R
A
3

T
O
D
O

0
0

0
F
R
S

0
0

F
R
S

0
0

0
cn
tl
zw

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
cn
tl
zd

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
su
bf
ze

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
ad

dz
e

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
cn
tt
zw

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
cn
tt
zd

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
su
bf
ze
o

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
ad

dz
eo

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
ex
ts
h

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
ex
ts
b

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
ex
ts
w

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
fs
qr
ts

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fr
es

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fr
sq
rt
es

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fs
in
s

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fc
os
s

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fc
fid

s
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fc
fid

us
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fs
qr
t

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fr
e

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
fr
sq
rt
e

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
0/
12
=
fr
sp

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
0/
14
=
fc
ti
w

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
0/
15
=
fc
ti
w
z

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
1/
8=

fn
eg

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
2/
8=

fm
r

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
4/
8=

fn
ab

s
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
4/
14
=
fc
ti
w
u

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
4/
15
=
fc
ti
w
uz

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
8/
8=

fa
bs

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
12
/8
=
fr
in

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
13
/8
=
fr
iz

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
14
/8
=
fr
ip

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
15
/8
=
fr
im

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
18
/7
=
m
ffs

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
25
/1
4=

fc
ti
d

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
25
/1
5=

fc
ti
dz

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0

APPENDIX F. SVP64 AUGMENTATION TABLE 257

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

26
/1
4=

fc
fid

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
29
/1
4=

fc
ti
du

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
29
/1
5=

fc
ti
du

z
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
30
/1
4=

fc
fid

u
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
B

0
0

0
F
R
B

0
F
R
T

0
C
R
1

0
ad

di
c.

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
rl
w
in
m

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
an

di
.

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
an

di
s.

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

R
S

0
0

R
A

0
C
R
0

0
m
ul
li

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
rl
di
cl

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
rl
di
cl

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
rl
di
cr

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
rl
di
cr

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
rl
di
c

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
rl
di
c

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
su
bf
m
e

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
ad

dm
e

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
su
bf
m
eo

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
ad

dm
eo

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
sr
aw

i
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
sr
ad

i
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
sr
ad

i
N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
ex
ts
w
sl
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
ex
ts
w
sl
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
S

0
0

0
0

R
S

R
A

0
C
R
0

0
gr
ev
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0
gr
ev
w
i

N
O
R
M
A
L

2P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

0
0

R
A

0
0

R
T

0
C
R
0

0

F
.4
.7

R
M
-1
P
-2
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

cr
no

r
C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
an

dc
C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
xo

r
C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
na

nd
C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
an

d
C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
eq
v

C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
or
c

C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cr
or

C
R
O
P

1P
E
X
T
R
A
3

d:
B
T

s:
B
A

s:
B
B

0
0

0
0

0
B
A
_
B
B

B
T

0
cm

p
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
R
A

s:
R
B

0
R
A

R
B

0
0

0
B
F

0
cm

pl
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
R
A

s:
R
B

0
R
A

R
B

0
0

0
B
F

0
cm

pr
b

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
R
A

s:
R
B

0
R
A

R
B

0
0

0
B
F

0
cm

pe
qb

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
R
A

s:
R
B

0
R
A

R
B

0
0

0
B
F

0
0/
0=

fc
m
pu

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
0

0
B
F

0
1/
0=

fc
m
po

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
0

0
B
F

0
4/
0=

ft
di
v

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
B
F

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
0

0
B
F

0
bm

as
k

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
0

0
bp

er
m
d

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A

s:
R
S

s:
R
B

0
R
S

R
B

0
R
A

0
0

0
m
od

ud
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
0

0

APPENDIX F. SVP64 AUGMENTATION TABLE 258

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

m
od

uw
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
0

0
cm

pb
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A

s:
R
S

s:
R
B

0
R
S

R
B

0
R
A

0
0

0
m
od

sd
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
0

0
m
od

sw
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
0

0
26
/6
=
fm

rg
ow

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
0

0
30
/6
=
fm

rg
ew

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
0

0
rl
w
nm

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
m
in
u

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ax

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
in
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
cp

ro
p

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ax

s
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ab

sd
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ab

sd
u

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
av
ga
dd

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
rl
dc

l
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
rl
dc

r
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
su
bf
c

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hd

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

dc
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hw

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
sl
w

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
sl
d

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
an

d
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
su
bf

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
an

dc
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
m
ul
hd

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

dg
6s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hw

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
no

r
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
su
bf
e

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

de
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
ld

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
lw

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

d
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
eq
v

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
xo

r
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
di
vd

eu
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

eu
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
or
c

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
di
vd

e
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

e
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
or

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
di
vd

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
na

nd
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
R
S

R
B

0
R
A

0
C
R
0

0
di
vd

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
su
bf
co

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hd

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

dc
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hw

u
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0

APPENDIX F. SVP64 AUGMENTATION TABLE 259

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

sr
w

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
sr
d

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
su
bf
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hd

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
hw

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
su
bf
eo

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

de
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
ld
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
m
ul
lw
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ad

do
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
sr
aw

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
sr
ad

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
B

s:
R
S

0
0

R
B

R
S

R
A

0
C
R
0

0
di
vd

eu
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

eu
o

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vd

eo
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

eo
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vd

uo
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

uo
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vd

o
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
di
vw

o
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
gr
ev

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
gr
ev
w

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

0
R
A

R
B

0
R
T

0
C
R
0

0
ffa

dd
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fd
iv
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fs
ub

s
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fa
dd

s
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fm

ul
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
C

0
F
R
A

0
F
R
C

F
R
T

0
C
R
1

0
fd
iv

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fs
ub

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fa
dd

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
fm

ul
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
C

0
F
R
A

0
F
R
C

F
R
T

0
C
R
1

0
0/
8=

fc
ps
gn

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

0
F
R
A

F
R
B

0
F
R
T

0
C
R
1

0
rl
w
im

i
N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
A

s:
R
S

0
R
A

0
R
S

R
A

0
C
R
0

0
rl
di
m
i

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
A

s:
R
S

0
R
A

0
R
S

R
A

0
C
R
0

0
rl
di
m
i

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
A
;d
:C

R
0

s:
R
A

s:
R
S

0
R
A

0
R
S

R
A

0
C
R
0

0

F
.4
.8

R
M
-1
P
-1
D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

fm
vi
s

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
F
R
S

0
0

0
0

0
0

F
R
S

0
0

0
sv
st
ep

N
O
R
M
A
L

1P
E
X
T
R
A
3

d:
R
T
;d
:C

R
0

0
0

0
0

0
0

R
T

0
C
R
0

0

F
.4
.9

R
M
-1
P
-1
S

APPENDIX F. SVP64 AUGMENTATION TABLE 260

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

td
i

N
O
R
M
A
L

1P
E
X
T
R
A
2

0
0

0
0

R
A

0
0

0
0

0
0

tw
i

N
O
R
M
A
L

1P
E
X
T
R
A
2

0
0

0
0

R
A

0
0

0
0

0
0

F
.4
.1
0

R
M
-2
P
-2
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

m
tc
rf
/m

to
cr
f

N
O
R
M
A
L

2P
E
X
T
R
A
2

d:
C
R

s:
R
S

s:
C
R

0
R
S

0
0

0
W

H
O
LE

_
R
E
G

W
H
O
LE

_
R
E
G

0

F
.4
.1
1

R
M
-1
P
-3
S1

D

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

is
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T

s:
R
A

s:
R
B

s:
B
C

R
A
_
O
R
_
ZE

R
O

R
B

0
R
T

B
C

0
0

ab
sd
ac
s

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

s:
R
T

R
A

R
B

R
T

R
T

0
C
R
0

0
ab

sd
ac
u

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

s:
R
T

R
A

R
B

R
T

R
T

0
C
R
0

0

APPENDIX F. SVP64 AUGMENTATION TABLE 261

in
sn

m
od

e
C
O
N
D
IT

IO
N
S

P
ty
pe

E
ty
pe

0
1

2
3

in
1

in
2

in
3

ou
t

C
R

in
C
R

ou
t

ou
t2

te
rn
lo
gi

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
R
T
;d
:C

R
0

s:
R
A

s:
R
B

s:
R
T

R
A

R
B

R
T

R
T

0
C
R
0

0
ffm

su
bs

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
ffm

ad
ds

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
ffn

m
su
bs

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
ffn

m
ad

ds
N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fd
m
ad

ds
N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fm

su
bs

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fm

ad
ds

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fn
m
su
bs

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fn
m
ad

ds
N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fs
el

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fm

su
b

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fm

ad
d

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fn
m
su
b

N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0
fn
m
ad

d
N
O
R
M
A
L

1P
E
X
T
R
A
2

d:
F
R
T
;d
:C

R
1

s:
F
R
A

s:
F
R
B

s:
F
R
C

F
R
A

F
R
B

F
R
C

F
R
T

0
C
R
1

0

Part III

Scalar Instructions

262

Preamble

As explained in the Simple-V introduction these are all intentionally and specifically Scalar instructions. Each
section is free-standing, has no connection, dependence or relationship to any other section, including no direct
critical dependence either way on Simple-V. They have with almost no exceptions been specifically crafted to
have a justification for their inclusion in the Power ISA as Scalar instructions purely on their own merit.

• The biginteger multiply-and-add instruction is similar to Intel’s mulx in that it produces a pair of results.

• JavaScript(tm) rounding is present in ARM as fjcvtzs and would save an astounding 35 instructions with 5
branches.

• Whilst there exist CR bit manipulation and copying instructions there are no CR Field manipulation
instructions, putting pressure on GPRs if several CR fits need to be analysed.

• one single instruction, bmask, is proposed that covers the whole of x86 BMI1 and AMD TBM, combined,
and provides more.

All of these have nothing to do with Simple-V at all: they make the Power ISA better at modern general-purpose
compute, bringing it up-to-date.

That said: by a wonderful coincidence, should they be included, then Simple-V’s capabilities increase significantly.
For example the CRweird instructions combined with the bitmanip instructions, alongside Vectorised Rc=1 turn
CR Fields into extremely powerful Predicate masks. bmask not only covers the BMI and TBM instructions of
Intel and AMD it also includes the RVV set-before-first and set-after-first instructions.

The clean and clear separation between Vectorisation Prefix and Scalar Suffix is what makes it possible for both
Scalar-only and Scalable-Vectors to benefit. It also makes proposal much easier, as there is no inter-dependence.

It is however important to note that the rationale for these instructions comes from a more general-purpose
modern computing paradigm that is outside of IBM’s much more focussed and specialist traditional customer
base. We deeply respect IBM’s curator role of the Power ISA of the past 25 years as much as we appreciate their
courage in transferring that role to the OpenPOWER Foundation ISA Working Group.

263

Chapter 1

SV Vector-assist Scalar ops

[[!tag standards]]

1.1 SV Vector-assist Operations.

Links:

• [[discussion]]
• https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vector-register-gather-instructions
• https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-May/004884.html
• https://bugs.libre-soc.org/show_bug.cgi?id=865 implementation in simulator
• https://bugs.libre-soc.org/show_bug.cgi?id=213
• https://bugs.libre-soc.org/show_bug.cgi?id=142 specialist vector ops out of scope for this document

[[openpower/sv/3d_vector_ops]]
• [[simple_v_extension/specification/bitmanip]] previous version, contains pseudocode for sof, sif, sbf
• https://en.m.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set#TBM_(Trailing_Bit_

Manipulation)

The core Power ISA was designed as scalar: SV provides a level of abstraction to add variable-length element-
independent parallelism. Therefore there are not that many cases where actual Vector instructions are needed.
If they are, they are more “assistance” functions. Two traditional Vector instructions were initially considered
(conflictd and vmiota) however they may be synthesised from existing SVP64 instructions: vmiota may use
[[svstep]]. Details in [[discussion]]

Notes:

• Instructions suited to 3D GPU workloads (dotproduct, crossproduct, normalise) are out of scope: this
document is for more general-purpose instructions that underpin and are critical to general-purpose Vector
workloads (including GPU and VPU)

• Instructions related to the adaptation of CRs for use as predicate masks are covered separately, by crweird
operations. See {CR Weird ops}.

1.1.1 Mask-suited Bitmanipulation

BM2-Form

0..5 6..10 11..15 16..20 21-25 26 27..31 Form
PO RS RA RB bm L XO BM2-Form

264

https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vector-register-gather-instructions
https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-May/004884.html
https://bugs.libre-soc.org/show_bug.cgi?id=865
https://bugs.libre-soc.org/show_bug.cgi?id=213
https://bugs.libre-soc.org/show_bug.cgi?id=142
https://en.m.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set#TBM_(Trailing_Bit_Manipulation)
https://en.m.wikipedia.org/wiki/X86_Bit_manipulation_instruction_set#TBM_(Trailing_Bit_Manipulation)

CHAPTER 1. SV VECTOR-ASSIST SCALAR OPS 265

• bmask RS,RA,RB,bm,L

Pseudo-code:

if _RB = 0 then mask <- [1] * XLEN
else mask <- (RB)
ra <- (RA) & mask
a1 <- ra
if bm[4] = 0 then a1 <- ¬ra
mode2 <- bm[2:3]
if mode2 = 0 then a2 <- (¬ra)+1
if mode2 = 1 then a2 <- ra-1
if mode2 = 2 then a2 <- ra+1
if mode2 = 3 then a2 <- ¬(ra+1)
a1 <- a1 & mask
a2 <- a2 & mask
select operator
mode3 <- bm[0:1]
if mode3 = 0 then result <- a1 | a2
if mode3 = 1 then result <- a1 & a2
if mode3 = 2 then result <- a1 ^ a2
if mode3 = 3 then result <- undefined([0]*XLEN)
mask output
result <- result & mask
optionally restore masked-out bits
if L = 1 then

result <- result | (RA & ¬mask)
RT <- result

• first pattern A: two options x or ~x
• second pattern B: three options | & or ˆ
• third pattern C: four options x+1, x-1, ~(x+1) or (~x)+1

The lower two bits of bm set to 0b11 are RESERVED. An illegal instruction trap must be raised.

Special Registers Altered:

None

1.1.2 Carry-lookahead

As a single scalar 32-bit instruction, up to 64 carry-propagation bits may be computed. When the output is
then used as a Predicate mask it can be used to selectively perform the “add carry” of biginteger math, with
sv.addi/sm=rN RT.v, RA.v, 1.

• cprop RT,RA,RB (Rc=0)
• cprop. RT,RA,RB (Rc=1)

pseudocode:

P = (RA)
G = (RB)
RT = ((P|G)+G)^P

X-Form

0:5 6:10 11:15 16:20 21:30 31 name Form
PO RT RA RB XO Rc cprop X-Form

CHAPTER 1. SV VECTOR-ASSIST SCALAR OPS 266

used not just for carry lookahead, also a special type of predication mask operation.

Chapter 2

CR Weird ops

2.1 New instructions for CR/INT predication

See:

• main bugreport for crweirds https://bugs.libre-soc.org/show_bug.cgi?id=533
• https://bugs.libre-soc.org/show_bug.cgi?id=527
• https://bugs.libre-soc.org/show_bug.cgi?id=569
• https://bugs.libre-soc.org/show_bug.cgi?id=558#c47
• [[discussion]]

2.1.1 crrweird

CW2-Form

|0 |6 |9 |11|12 |16 |19 |22 |26 |31|
| PO | RT |M |fmsk |BFA |XO |fmap | XO |Rc|

• crrweird RT,BFA,M,fmsk,fmap (Rc=0)
• crrweird. RT,BFA,M,fmsk,fmap (Rc=1)

creg <- CR[4*BFA+32:4*BFA+35]
n <- (¬fmap ^ creg) & fmsk
result <- (n != 0) if M else (n == fmsk)
RT <- [0] * 63 || result
if Rc then

CR0 <- analyse(RT)

When used with SVP64 Prefixing this is a {Arithmetic Mode} SVP64 type operation and as such can use Rc=1
and RC1 Data-dependent Mode capability

Also as noted below, element-width override bits normally used on the source is instead used to allow multiple
results to be packed sequentially into the destination. Destination elwidth overrides still apply.

Special registers altered:

CR0 (Rc=1)

2.1.2 mfcrrweird

CW2-Form

267

https://bugs.libre-soc.org/show_bug.cgi?id=533
https://bugs.libre-soc.org/show_bug.cgi?id=527
https://bugs.libre-soc.org/show_bug.cgi?id=569
https://bugs.libre-soc.org/show_bug.cgi?id=558#c47

CHAPTER 2. CR WEIRD OPS 268

|0 |6 |9 |11|12 |16 |19 |22 |26 |31|
| PO | RT |M |fmsk |BFA |XO |fmap | XO |Rc|

• mfcrrweird RT,BFA,fmsk,fmap (Rc=0)
• mfcrrweird. RT,BFA,fmsk,fmap (Rc=1)

creg = CR[4*BFA+32:4*BFA+35]
result = (¬fmap ^ creg) & fmsk
RT = [0] * 60 || result
If Rc:

CR0 = analyse(RT)

When used with SVP64 Prefixing this is a {Arithmetic Mode} SVP64 type operation and as such can use Rc=1
and RC1 Data-dependent Mode capability.

Also as noted below, element-width override bits normally used on the source is instead used to allow multiple
results to be packed into the destination. Destination elwidth overrides still apply

2.1.3 mtcrrweird

CW-Form

0	6	9	11	12	16	19	22	26	31
PO	RA	M	fmsk	BF	XO	fmap	XO		
PO	BT	M	fmsk	BF	XO	fmap	XO		
PO	BF		M	fmsk	BF	XO	fmap	XO	

• mtcrrweird BF,RA,M,fmsk,fmap

a = (RA|0)
creg = a[60:63]
result = (¬fmap ^ creg) & fmsk
if M:

result |= CR[4*BF+32:4*BF+35] & ~fmsk
CR[4*BF+32:4*BF+35] = result

When used with SVP64 Prefixing this is a {Arithmetic Mode} SVP64 type operation and as such can use RC1
Data-dependent Mode capability

Hardware Architectural Note: when M=1 this instruction is a Read-Modify-Write on the BF CR Field. When
M=0 it is a more normal Write.

Special Registers Altered:

CR Field BF

2.1.4 mtcrweird

CW-Form

0	6	9	11	12	16	19	22	26	31
PO	RA	M	fmsk	BF	XO	fmap	XO		
PO	BT	M	fmsk	BF	XO	fmap	XO		
PO	BF		M	fmsk	BF	XO	fmap	XO	

• mtcrweird BF,RA,M,fmsk,fmap

reg = (RA|0)
creg = reg[63] || reg[63] || reg[63] || reg[63]
result = (¬fmap ^ creg) & fmsk

CHAPTER 2. CR WEIRD OPS 269

if M:
result |= CR[4*BF+32:4*BF+35] & ~fmsk

CR[4*BF+32:4*BF+35] = result

Note that when M=1 this operation is a Read-Modify-Write on the CR Field BF. Masked-out bits of the 4-bit
CR Field BF will not be changed when M=1. Correspondingly when M=0 this operation is an overwrite: no
read of BF is required because the masked-out bits of the BF CR Field are set to zero.

When used with SVP64 Prefixing this is a {Condition Register Fields Mode} SVP64 type operation that has
3-bit Data-dependent and 3-bit Predicate-result capability (BF is 3 bits)

Special Registers Altered:

CR Field BF

2.1.5 mcrfm - Move CR Field, masked.

CW-Form

|0 |6 |9 |11|12 |16 |19 |22 |26 |31|
| PO | BF | |M |fmsk |BF |XO |fmap | XO |

• mcrfm: BF,BFA,M,fmsk,fmap

result = fmsk & CR[4*BFA+32:4*BFA+35]
if M:

result |= CR[4*BF+32:4*BF+35] & ~fmsk
result ^= fmap
CR[4*BF+32:4*BF+35] = result

This instruction copies, sets, or inverts parts of a CR Field into another CR Field. mcrf copies only one bit of
the CR from any arbitrary bit to any other arbitrary bit, whereas mcrfm copies an entire 4-bit CR Field (or
masked parts thereof). Unlike mcrf the bits of the CR Field may not change position: the EQ bit from the
source may only go into the EQ bit of the destination (optionally inverted, set, or cleared).

When M=1 this operation is a Read-Modify-Write on the CR Field BF. Masked-out bits of the 4-bit CR Field
BF will not be changed when M=1. Correspondingly when M=0 this operation is an overwrite: no read of BF is
required because the masked-out bits of the BF CR Field are set to zero.

When used with SVP64 Prefixing this is a {Condition Register Fields Mode} SVP64 type operation that has
3-bit Data-dependent and 3-bit Predicate-result capability (BF is 3 bits)

Programmer’s note: fmap being XORed onto the result provides considerable flexibility. individual bits of BFA
may be copied inverted to BF by ensuring that fmsk and fmap have the same bit set. Also, individual bits in BF
may be set to 1 by ensuring that the required bit of fmsk is set to zero and the same bit in fmap is set to 1

Special Registers Altered:

CR Field BF

2.1.6 crweirder

|0 |6 |9 |11|12 |16 |19 |22 |26 |31|
| PO | BT |M |fmsk |BF |XO |fmap | XO |

• crweirder: BT,BFA,fmsk,fmap

creg = CR[4*BFA+32:4*BFA+35]
n = (¬fmap ^ creg) & fmsk
result = (n != 0) if M else (n == fmsk)
CR[32+BT] = result

CHAPTER 2. CR WEIRD OPS 270

Special Registers Altered:

CR[BT+32]

When used with SVP64 Prefixing this is a {Condition Register Fields Mode} SVP64 type operation that has
5-bit Data-dependent capability (BT is 5 bits)

Hardware Architectural Note: this instruction is always a Read-Modify-Write on the CR Field containing BT.

Example Pseudo-ops:

mtcri BF, fmap mtcrweird BF, r0, 0, 0b1111,~fmap
mtcrset BF, fmsk mtcrweird BF, r0, 1, fmsk,0b0000
mtcrclr BF, fmsk mtcrweird BF, r0, 1, fmsk,0b1111

CHAPTER 2. CR WEIRD OPS 271

2.2 Vectorised versions involving GPRs

The name “weird” refers to a minor violation of SV rules when it comes to deriving the Vectorised versions of
these instructions.

Normally the progression of the SV for-loop would move on to the next register. Instead however in the scalar
case these instructions remain in the same register and insert or transfer between bits of the scalar integer
source or destination. The reason is that when using CR Fields as predicate masks and there is a need to transfer
into a GPR, again for use as a predicate mask, the CR Field bits need to be efficiently packed into that one
GPR (r3, r10 or r31).

Further useful violation of the normal SV Elwidth override rules allows for packing (or unpacking) of multiple
CR test results into (or out of) an Integer Element. Note that the CR (source operand) elwidth field is utilised
to determine the bit- packing size (1/2/4/8 with remaining bits within the Integer element set to zero) whilst
the INT (dest operand) elwidth field still sets the Integer element size as usual (8/16/32/default)

sv.crrweird: RT, BB, fmsk, fmap

for i in range(VL):
if BB.isvec: # Vector CR Field source?

creg = CR{BB+i}
else:

creg = CR{BB}
n = (¬fmap ^ creg) & fmsk
result = (n != 0) if M else (n == fmsk)
if RT.isvec:

TODO: RT.elwidth override to be also added here
note, yes, really, the CR's elwidth field determines
the bit-packing into the INT!
if BB.elwidth == 0b00:

pack 1 result into 64-bit registers
iregs[RT+i][0..62] = 0
iregs[RT+i][63] = result # sets LSB to result

if BB.elwidth == 0b01:
pack 2 results sequentially into INT registers
iregs[RT+i//2][0..61] = 0
iregs[RT+i//2][63-(i%2)] = result

if BB.elwidth == 0b10:
pack 4 results sequentially into INT registers
iregs[RT+i//4][0..59] = 0
iregs[RT+i//4][63-(i%4)] = result

if BB.elwidth == 0b11:
pack 8 results sequentially into INT registers
iregs[RT+i//8][0..55] = 0
iregs[RT+i//8][63-(i%8)] = result

else:
scalar RT destination: exceeding VL=64 is UNDEFINED
iregs[RT][63-i] = result # results also in scalar INT
only mapreduce mode (/mr) allows continuation here
if not SVRM.mapreduce: break

Note that:

• in the scalar case the CR-Vector assessment is stored bit-wise starting at the LSB of the destination scalar
INT

• in the INT-vector case the results are packed into LSBs of the INT Elements, the packing arrangement
depending on both elwidth override settings.

CHAPTER 2. CR WEIRD OPS 272

mfcrrweird: RT, BFA, fmsk.fmap

Unlike crrweird the results are 4-bit wide, so the packing will begin to spill over to other destination elements. 8
results per destination at 4-bits each still fits into destination elwidth at 32-bit, but for 16-bit and 8-bit obviously
this does not fit, and must split across to the next element

When for example destination elwidth is 16-bit (0b10) the following packing occurs:

• SVRM bits 6:7 equal to 0b00 - one 4-bit result element packed into the first 4-bits of the 16-bit destination
element (in the first 4 LSBs)

• SVRM bits 6:7 equal to 0b01 - two 4-bit result elements packed into the first 8-bits of the 16-bit destination
element (in the first 8 LSBs)

• SVRM bits 6:7 equal to 0b10 - four 4-bit result elements packed into each 16-bit destination element
• SVRM bits 6:7 equal to 0b11 - eight 4-bit result elements, the first four of which are packed into the first

16-bit destination element, the second four of which are packed into the second 16-bit destination element.

Pseudocode example: note that dest elwidth overrides affect the packing of results. BB.elwidth in effect requests
how many 4-bit result elements would like to be packed, but RT.elwidth determines the limit. Any parts of the
destination elements not containing results are set to zero.

for i in range(VL):
if BB.isvec:

creg = CR{BB+i}
else:

creg = CR{BB}
result = (¬fmap ^ creg) & fmsk # 4-bit result
if RT.isvec:

RT.elwidth override can affect the packing
bwid = {0b00:64, 0b01:8, 0b10:16, 0b11:32}[RT.elwidth]
t4, t8 = min(4, bwid//2), min(8, bwid//2)
yes, really, the CR's elwidth field determines
the bit-packing into the INT!
if BB.elwidth == 0b00:

pack 1 result into 64-bit registers
idx, boff = i, 0

if BB.elwidth == 0b01:
pack 2 results sequentially into INT registers
idx, boff = i//2, i%2

if BB.elwidth == 0b10:
pack 4 results sequentially into INT registers
idx, boff = i//t4, i%t4

if BB.elwidth == 0b11:
pack 8 results sequentially into INT registers
idx, boff = i//t8, i%t8

else:
scalar RT destination: exceeding VL=16 is UNDEFINED
idx, boff = 0, i

store 4-bit result in Vector starting from RT
iregs[RT+idx][60-boff*4:63-boff*4] = result
if not RT.isvec:

only mapreduce mode (/mr) allows continuation here
if not SVRM.mapreduce: break

2.3 Predication Examples

Take the following example:

CHAPTER 2. CR WEIRD OPS 273

r10 = 0b00010
sv.mtcrweird/dm=r10/dz cr8.v, 0, 0b0011.0000

Here, RA is zero, so the source input is zero. The destination is CR Field 8, and the destination predicate mask
indicates to target the first two elements. Destination predicate zeroing is enabled, and the destination predicate
is only set in the 2nd bit. fmsk is 0b0011, fmap is all zeros.

Let us first consider what should go into element 0 (CR Field 8):

• The destination predicate bit is zero, and zeroing is enabled.
• Therefore, what is in the source is irrelevant: the result must be zero.
• Therefore all four bits of CR Field 8 are therefore set to zero.

Now the second element, CR Field 9 (CR9):

• Bit 2 of the destination predicate, r10, is 1. Therefore the computation of the result is relevant.
• RA is zero therefore bit 2 is zero. fmsk is 0b0011 and fmap is 0b0000
• When calculating n0 thru n3 we get n0=1, n1=2, n2=0, n3=0
• Therefore, CR9 is set (using LSB0 ordering) to 0b0011, i.e. to fmsk.

It should be clear that this instruction uses bits of the integer predicate to decide whether to set CR Fields to
(fmsk & ~fmap) or to zero. Thus, in effect, it is the integer predicate that has been copied into the CR Fields.

By using twin predication, zeroing, and inversion (sm=~r3, dm=r10) for example, it becomes possible to combine
two Integers together in order to set bits in CR Fields. Likewise there are dozens of ways that CR Predicates
can be used, on the same sv.mtcrweird instruction.

[[!tag standards]]

Chapter 3

Bitmanip ops

[[!tag standards]]

[[!toc levels=1]]

3.1 Implementation Log

• ternlogi https://bugs.libre-soc.org/show_bug.cgi?id=745
• grev https://bugs.libre-soc.org/show_bug.cgi?id=755
• GF2ˆM https://bugs.libre-soc.org/show_bug.cgi?id=782
• binutils https://bugs.libre-soc.org/show_bug.cgi?id=836
• shift-and-add https://bugs.libre-soc.org/show_bug.cgi?id=968

3.2 bitmanipulation

DRAFT STATUS

pseudocode: [[openpower/isa/bitmanip]]

this extension amalgamates bitmanipulation primitives from many sources, including RISC-V bitmanip, Packed
SIMD, AVX-512 and OpenPOWER VSX. Also included are DSP/Multimedia operations suitable for Audio/Video.
Vectorisation and SIMD are removed: these are straight scalar (element) operations making them suitable for
embedded applications. Vectorisation Context is provided by {Scalable Vectors for Power ISA}.

When combined with SV, scalar variants of bitmanip operations found in VSX are added so that the Packed
SIMD aspects of VSX may be retired as “legacy” in the far future (10 to 20 years). Also, VSX is hundreds of
opcodes, requires 128 bit pathways, and is wholly unsuited to low power or embedded scenarios.

ternlogv is experimental and is the only operation that may be considered a “Packed SIMD”. It is added as a
variant of the already well-justified ternlog operation (done in AVX512 as an immediate only) “because it looks
fun”. As it is based on the LUT4 concept it will allow accelerated emulation of FPGAs. Other vendors of ISAs
are buying FPGA companies to achieve similar objectives.

general-purpose Galois Field 2ˆM operations are added so as to avoid huge custom opcode proliferation across
many areas of Computer Science. however for convenience and also to avoid setup costs, some of the more
common operations (clmul, crc32) are also added. The expectation is that these operations would all be covered
by the same pipeline.

274

https://bugs.libre-soc.org/show_bug.cgi?id=745
https://bugs.libre-soc.org/show_bug.cgi?id=755
https://bugs.libre-soc.org/show_bug.cgi?id=782
https://bugs.libre-soc.org/show_bug.cgi?id=836
https://bugs.libre-soc.org/show_bug.cgi?id=968

CHAPTER 3. BITMANIP OPS 275

note that there are brownfield spaces below that could incorporate some of the set-before-first and other scalar
operations listed in {Swizzle Move}, {SV Vector ops}, {FP/Int Conversion ops} and the {Audio and Video
Opcodes} as well as {setvl instruction}, {svstep instruction}, {REMAP subsystem}

Useful resource:

• https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders
• https://maths-people.anu.edu.au/~brent/pd/rpb232tr.pdf
• https://gist.github.com/animetosho/d3ca95da2131b5813e16b5bb1b137ca0
• https://github.com/HJLebbink/asm-dude/wiki/GF2P8AFFINEINVQB

3.3 Draft Opcode tables

[[sv/draft_opcode_tables]]

two major opcodes are needed

ternlog has its own major opcode

29.30 31 name Form
0 0 Rc ternlogi TLI-Form
0 1 crternlogi TLI-Form
1 iv grevlogi TLI-Form

2nd major opcode for other bitmanip: minor opcode allocation

28.30 31 name
-00 0 xpermi
-00 1 binary lut
-01 0 grevlog
-01 1 swizzle mv/fmv
010 Rc bitmask
011 SVP64
110 Rc 1/2-op
111 bmrevi

minmax is allocated to PO 19 XO 000011

1-op and variants

dest src1 subop op
RT RA .. bmatflip

2-op and variants

dest src1 src2 subop op
RT RA RB or bmatflip
RT RA RB xor bmatflip
RT RA RB grev
RT RA RB clmul*
RT RA RB gorc

https://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders
https://maths-people.anu.edu.au/~brent/pd/rpb232tr.pdf
https://gist.github.com/animetosho/d3ca95da2131b5813e16b5bb1b137ca0
https://github.com/HJLebbink/asm-dude/wiki/GF2P8AFFINEINVQB

CHAPTER 3. BITMANIP OPS 276

dest src1 src2 subop op
RT RA RB shuf shuffle
RT RA RB unshuf shuffle
RT RA RB width xperm
RT RA RB MMM minmax
RT RA RB av abs avgadd
RT RA RB type vmask ops
RT RA RB type abs accumulate (overwrite)

3 ops

• grevlog[w]
• GF mul-add
• bitmask-reverse

TODO: convert all instructions to use RT and not RS

0.5 6.10 11.15 16.20 21..25 26. . . .30 31 name Form
NN RT RA it/im57 im0-4 0 00 00 0 xpermi TODO-Form
NN RT RA RB RC sh 01 00 0 maddsubrs BF-Form
NN - 10 00 0 rsvd rsvd
NN - 11 00 0 rsvd rsvd
NN RT RA RB RC nh 00 00 1 binlut VA-Form
NN RT RA RB /BFA/ 0 01 00 1 bincrflut VA-Form
NN 1 01 00 1 svindex SVI-Form
NN RT RA RB mode L 10 00 1 bmask BM2-Form
NN 0 11 00 1 svshape SVM-Form
NN 1 11 00 1 svremap SVRM-Form
NN RT RA RB im0-4 im5-7 01 0 grevlog TLI-Form
NN - – 01 1 swizzle mv/f TODO
NN RT RA RB RC mode 010 Rc bitmask* VA2-Form
NN FRS d1 d0 d0 00 011 d2 fmvis DX-Form
NN FRS d1 d0 d0 01 011 d2 fishmv DX-Form
NN 10 011 Rc svstep SVL-Form
NN 11 011 Rc setvl SVL-Form
NN —- 110 1/2 ops other table [1]
NN RT RA RB RC 11 110 Rc bmrev VA2-Form
NN RT RA RB sh0-4 sh5 1 111 Rc bmrevi MDS-Form

[1] except bmrev

ops (note that av avg and abs as well as vec scalar mask are included here {SV Vector ops}, and the {Audio and
Video Opcodes})

0.5 6.10 11.15 16.20 21 22.23 24. . . .30 31 name Form
NN RS me sh SH ME 0 nn00 110 Rc bmopsi BM-Form
NN RS RA sh SH 0 1 nn00 110 Rc bmopsi XB-Form
NN RS RA im04 im5 1 1 im67 00 110 Rc bmatxori TODO
NN RT RA RB 1 00 0001 110 Rc cldiv X-Form
NN RT RA RB 1 01 0001 110 Rc clmod X-Form
NN RT RA 1 10 0001 110 Rc clmulh X-Form
NN RT RA RB 1 11 0001 110 Rc clmul X-Form
NN RT RA RB 0 00 0001 110 Rc rsvd

CHAPTER 3. BITMANIP OPS 277

0.5 6.10 11.15 16.20 21 22.23 24. . . .30 31 name Form
NN RT RA RB 0 01 0001 110 Rc rsvd
NN RT RA RB 0 10 0001 110 Rc rsvd
NN RT RA RB 0 11 0001 110 Rc vec cprop X-Form
NN 00 0101 110 0 crfbinlog {TODO}
NN 00 0101 110 1 rsvd
NN 10 0101 110 Rc rsvd
NN RT RA RB sm0 sm1 1 0101 110 Rc shaddw X-Form
NN 0 1001 110 Rc rsvd
NN RT RA RB 1 00 1001 110 Rc av abss X-Form
NN RT RA RB 1 01 1001 110 Rc av absu X-Form
NN RT RA RB 1 10 1001 110 Rc av avgadd X-Form
NN RT RA RB 1 11 1001 110 Rc grevlutr X-Form
NN RT RA RB sm0 sm1 0 1101 110 Rc shadd X-Form
NN RT RA RB sm0 sm1 1 1101 110 Rc shadduw X-Form
NN RT RA RB 0 00 0010 110 Rc rsvd
NN RS RA sh SH 00 1010 110 Rc rsvd
NN RT RA RB 0 00 0110 110 Rc rsvd
NN RS RA SH 0 00 1110 110 Rc rsvd
NN RT RA RB 1 00 1110 110 Rc absds X-Form
NN RT RA RB 0 01 0010 110 Rc rsvd
NN RT RA RB 1 01 0010 110 Rc clmulr X-Form
NN RS RA sh SH 01 1010 110 Rc rsvd
NN RT RA RB 0 01 0110 110 Rc rsvd
NN RS RA SH 0 01 1110 110 Rc rsvd
NN RT RA RB 1 01 1110 110 Rc absdu X-Form
NN RS RA RB 0 10 0010 110 Rc bmator X-Form
NN RS RA RB 0 10 0110 110 Rc bmatand X-Form
NN RS RA RB 0 10 1010 110 Rc bmatxor X-Form
NN RS RA RB 0 10 1110 110 Rc bmatflip X-Form
NN RT RA RB 1 10 0010 110 Rc xpermn X-Form
NN RT RA RB 1 10 0110 110 Rc xpermb X-Form
NN RT RA RB 1 10 1010 110 Rc xpermh X-Form
NN RT RA RB 1 10 1110 110 Rc xpermw X-Form
NN RT RA RB 0 11 1110 110 Rc absdacs X-Form
NN RT RA RB 1 11 1110 110 Rc absdacu X-Form
NN –11 110 Rc bmrev VA2-Form

3.4 binary and ternary bitops

Similar to FPGA LUTs: for two (binary) or three (ternary) inputs take bits from each input, concatenate them
and perform a lookup into a table using an 8-8-bit immediate (for the ternary instructions), or in another register
(4-bit for the binary instructions). The binary lookup instructions have CR Field lookup variants due to CR
Fields being 4 bit.

Like the x86 AVX512F vpternlogd/vpternlogq instructions.

3.4.1 ternlogi

0.5 6.10 11.15 16.20 21..28 29.30 31
NN RT RA RB im0-7 00 Rc

https://www.felixcloutier.com/x86/vpternlogd:vpternlogq

CHAPTER 3. BITMANIP OPS 278

lut3(imm, a, b, c):
idx = c << 2 | b << 1 | a
return imm[idx] # idx by LSB0 order

for i in range(64):
RT[i] = lut3(imm, RB[i], RA[i], RT[i])

3.4.2 binlut

Binary lookup is a dynamic LUT2 version of ternlogi. Firstly, the lookup table is 4 bits wide not 8 bits, and
secondly the lookup table comes from a register not an immediate.

0.5 6.10 11.15 16.20 21..25 26..31 Form
NN RT RA RB RC nh 00001 VA-Form
NN RT RA RB /BFA/ 0 01001 VA-Form

For binlut, the 4-bit LUT may be selected from either the high nibble or the low nibble of the first byte of RC:

lut2(imm, a, b):
idx = b << 1 | a
return imm[idx] # idx by LSB0 order

imm = (RC>>(nh*4))&0b1111
for i in range(64):

RT[i] = lut2(imm, RB[i], RA[i])

For bincrlut, BFA selects the 4-bit CR Field as the LUT2:

for i in range(64):
RT[i] = lut2(CRs{BFA}, RB[i], RA[i])

When Vectorised with SVP64, as usual both source and destination may be Vector or Scalar.

Programmer’s note: a dynamic ternary lookup may be synthesised from a pair of binlut instructions followed by
a ternlogi to select which to merge. Use nh to select which nibble to use as the lookup table from the RC source
register (nh=1 nibble high), i.e. keeping an 8-bit LUT3 in RC, the first binlut instruction may set nh=0 and the
second nh=1.

3.4.3 crternlogi

another mode selection would be CRs not Ints.

CRB-Form:

0.5 6.8 9.10 11.13 14.15 16.18 19.25 26.30 31
NN BF msk BFA msk BFB TLI XO TLI

for i in range(4):
a,b,c = CRs[BF][i], CRs[BFA][i], CRs[BFB][i])
if msk[i] CRs[BF][i] = lut3(imm, a, b, c)

This instruction is remarkably similar to the existing crops, crand etc. which have been noted to be a 4-bit
(binary) LUT. In effect crternlogi is the ternary LUT version of crops, having an 8-bit LUT. However it is an
overwrite instruction in order to save on register file ports, due to the mask requiring the contents of the BF to
be both read and written.

CHAPTER 3. BITMANIP OPS 279

Programmer’s note: This instruction is useful when combined with Matrix REMAP in “Inner Product” Mode,
creating Warshall Transitive Closure that has many applications in Computer Science.

3.4.4 crbinlog

With ternary (LUT3) dynamic instructions being very costly, and CR Fields being only 4 bit, a binary (LUT2)
variant is better

CRB-Form:

0.5 6.8 9.10 11.13 14.15 16.18 19.25 26.30 31
NN BF msk BFA msk BFB // XO //

for i in range(4):
a,b = CRs[BF][i], CRs[BF][i])
if msk[i] CRs[BF][i] = lut2(CRs[BFB], a, b)

When SVP64 Vectorised any of the 4 operands may be Scalar or Vector, including BFB meaning that multiple
different dynamic lookups may be performed with a single instruction. Note that this instruction is deliberately
an overwrite in order to reduce the number of register file ports required: like crternlogi the contents of BF
must be read due to the mask only writing back to non-masked-out bits of BF.

Programmer’s note: just as with binlut and ternlogi, a pair of crbinlog instructions followed by a merging
crternlogi may be deployed to synthesise dynamic ternary (LUT3) CR Field manipulation

3.5 int ops

3.5.1 min/m

required for the {Audio and Video Opcodes}

signed and unsigned min/max for integer.

signed/unsigned min/max gives more flexibility.

[un]signed min/max instructions are specifically needed for vector reduce min/max operations which are pretty
common.

X-Form

• PO=19, XO=—-000011 minmax RT, RA, RB, MMM
• PO=19, XO=—-000011 minmax. RT, RA, RB, MMM

see [[openpower/sv/rfc/ls013]] for MMM definition and pseudo-code.

implements all of (and more):

uint_xlen_t mins(uint_xlen_t rs1, uint_xlen_t rs2)
{ return (int_xlen_t)rs1 < (int_xlen_t)rs2 ? rs1 : rs2;
}
uint_xlen_t maxs(uint_xlen_t rs1, uint_xlen_t rs2)
{ return (int_xlen_t)rs1 > (int_xlen_t)rs2 ? rs1 : rs2;
}
uint_xlen_t minu(uint_xlen_t rs1, uint_xlen_t rs2)
{ return rs1 < rs2 ? rs1 : rs2;
}
uint_xlen_t maxu(uint_xlen_t rs1, uint_xlen_t rs2)

CHAPTER 3. BITMANIP OPS 280

{ return rs1 > rs2 ? rs1 : rs2;
}

3.5.2 average

required for the {Audio and Video Opcodes}, these exist in Packed SIMD (VSX) but not scalar

uint_xlen_t intavg(uint_xlen_t rs1, uint_xlen_t rs2) {
return (rs1 + rs2 + 1) >> 1:

}

3.5.3 absdu

required for the {Audio and Video Opcodes}, these exist in Packed SIMD (VSX) but not scalar

uint_xlen_t absdu(uint_xlen_t rs1, uint_xlen_t rs2) {
return (src1 > src2) ? (src1-src2) : (src2-src1)

}

3.5.4 abs-accumulate

required for the {Audio and Video Opcodes}, these are needed for motion estimation. both are overwrite on RS.

uint_xlen_t uintabsacc(uint_xlen_t rs, uint_xlen_t ra, uint_xlen_t rb) {
return rs + (src1 > src2) ? (src1-src2) : (src2-src1)

}
uint_xlen_t intabsacc(uint_xlen_t rs, int_xlen_t ra, int_xlen_t rb) {

return rs + (src1 > src2) ? (src1-src2) : (src2-src1)
}

For SVP64, the twin Elwidths allows e.g. a 16 bit accumulator for 8 bit differences. Form is RM-1P-3S1D where
RS-as-source has a separate SVP64 designation from RS-as-dest. This gives a limited range of non-overwrite
capability.

3.6 shift-and-add

Power ISA is missing LD/ST with shift, which is present in both ARM and x86. Too complex to add more
LD/ST, a compromise is to add shift-and-add. Replaces a pair of explicit instructions in hot-loops.

1.6.27 Z23-FORM
|0 |6 |11 |15 |16 |21 |23 |31 |
| PO | RT | RA | RB |sm | XO |Rc |

Pseudo-code (shadd):

n <- (RB)
m <- sm + 1
RT <- (n[m:XLEN-1] || [0]*m) + (RA)

Pseudo-code (shaddw):

shift <- sm + 1 # Shift is between 1-4
n <- EXTS((RB)[XLEN/2:XLEN-1]) # Only use lower XLEN/2-bits of RB
RT <- (n << shift) + (RA) # Shift n, add RA

Pseudo-code (shadduw):

CHAPTER 3. BITMANIP OPS 281

n <- ([0]*(XLEN/2)) || (RB)[XLEN/2:XLEN-1]
m <- sm + 1
RT <- (n[m:XLEN-1] || [0]*m) + (RA)

uint_xlen_t shadd(uint_xlen_t RA, uint_xlen_t RB, uint8_t sm) {
sm = sm & 0x3;
return (RB << (sm+1)) + RA;

}

uint_xlen_t shaddw(uint_xlen_t RA, uint_xlen_t RB, uint8_t sm) {
uint_xlen_t n = (int_xlen_t)(RB << XLEN / 2) >> XLEN / 2;
sm = sm & 0x3;
return (n << (sm+1)) + RA;

}

uint_xlen_t shadduw(uint_xlen_t RA, uint_xlen_t RB, uint8_t sm) {
uint_xlen_t n = RB & 0xFFFFFFFF;
sm = sm & 0x3;
return (n << (sm+1)) + RA;

}

3.7 bitmask set

based on RV bitmanip singlebit set, instruction format similar to shift [[isa/fixedshift]]. bmext is actually covered
already (shift-with-mask rldicl but only immediate version). however bitmask-invert is not, and set/clr are not
covered, although they can use the same Shift ALU.

bmext (RB) version is not the same as rldicl because bmext is a right shift by RC, where rldicl is a left rotate.
for the immediate version this does not matter, so a bmexti is not required. bmrev however there is no direct
equivalent and consequently a bmrevi is required.

bmset (register for mask amount) is particularly useful for creating predicate masks where the length is a dynamic
runtime quantity. bmset(RA=0, RB=0, RC=mask) will produce a run of ones of length “mask” in a single
instruction without needing to initialise or depend on any other registers.

0.5 6.10 11.15 16.20 21.25 26..30 31 name
NN RS RA RB RC mode 010 Rc bm*

Immediate-variant is an overwrite form:

0.5 6.10 11.15 16.20 21 22.23 24. . . .30 31 name
NN RS RB sh SH itype 1000 110 Rc bm*i

def MASK(x, y):
if x < y:

x = x+1
mask_a = ((1 << x) - 1) & ((1 << 64) - 1)
mask_b = ((1 << y) - 1) & ((1 << 64) - 1)

elif x == y:
return 1 << x

else:
x = x+1
mask_a = ((1 << x) - 1) & ((1 << 64) - 1)

CHAPTER 3. BITMANIP OPS 282

mask_b = (~((1 << y) - 1)) & ((1 << 64) - 1)
return mask_a ^ mask_b

uint_xlen_t bmset(RS, RB, sh)
{

int shamt = RB & (XLEN - 1);
mask = (2<<sh)-1;
return RS | (mask << shamt);

}

uint_xlen_t bmclr(RS, RB, sh)
{

int shamt = RB & (XLEN - 1);
mask = (2<<sh)-1;
return RS & ~(mask << shamt);

}

uint_xlen_t bminv(RS, RB, sh)
{

int shamt = RB & (XLEN - 1);
mask = (2<<sh)-1;
return RS ^ (mask << shamt);

}

uint_xlen_t bmext(RS, RB, sh)
{

int shamt = RB & (XLEN - 1);
mask = (2<<sh)-1;
return mask & (RS >> shamt);

}

bitmask extract with reverse. can be done by bit-order-inverting all of RB and getting bits of RB from the
opposite end.

when RA is zero, no shift occurs. this makes bmextrev useful for simply reversing all bits of a register.

msb = ra[5:0];
rev[0:msb] = rb[msb:0];
rt = ZE(rev[msb:0]);

uint_xlen_t bmrevi(RA, RB, sh)
{

int shamt = XLEN-1;
if (RA != 0) shamt = (GPR(RA) & (XLEN - 1));
shamt = (XLEN-1)-shamt; # shift other end
brb = bitreverse(GPR(RB)) # swap LSB-MSB
mask = (2<<sh)-1;
return mask & (brb >> shamt);

}

uint_xlen_t bmrev(RA, RB, RC) {
return bmrevi(RA, RB, GPR(RC) & 0b111111);

}

CHAPTER 3. BITMANIP OPS 283

0.5 6.10 11.15 16.20 21.26 27..30 31 name Form
NN RT RA RB sh 1111 Rc bmrevi MDS-Form

0.5 6.10 11.15 16.20 21.25 26..30 31 name Form
NN RT RA RB RC 11110 Rc bmrev VA2-Form

3.8 grevlut

generalised reverse combined with a pair of LUT2s and allowing a constant 0b0101...0101 when RA=0, and an
option to invert (including when RA=0, giving a constant 0b1010. . . 1010 as the initial value) provides a wide
range of instructions and a means to set hundreds of regular 64 bit patterns with one single 32 bit instruction.

the two LUT2s are applied left-half (when not swapping) and right-half (when swapping) so as to allow a wider
range of options.

• A value of 0b11001010 for the immediate provides the functionality of a standard “grev”.

• 0b11101110 provides gorc

grevlut should be arranged so as to produce the constants needed to put into bext (bitextract) so as in turn
to be able to emulate x86 pmovmask instructions https://www.felixcloutier.com/x86/pmovmskb. This only
requires 2 instructions (grevlut, bext).

Note that if the mask is required to be placed directly into CR Fields (for use as CR Predicate masks rather than
a integer mask) then sv.cmpi or sv.ori may be used instead, bearing in mind that sv.ori is a 64-bit instruction,
and VL must have been set to the required length:

sv.ori./elwid=8 r10.v, r10.v, 0

The following settings provide the required mask constants:

RA=0 RB imm iv result
0x555.. 0b10 0b01101100 0 0x111111. . .
0x555.. 0b110 0b01101100 0 0x010101. . .
0x555.. 0b1110 0b01101100 0 0x00010001. . .
0x555.. 0b10 0b11000110 1 0x88888. . .
0x555.. 0b110 0b11000110 1 0x808080. . .
0x555.. 0b1110 0b11000110 1 0x80008000. . .

Better diagram showing the correct ordering of shamt (RB). A LUT2 is applied to all locations marked in red
using the first 4 bits of the immediate, and a separate LUT2 applied to all locations in green using the upper 4
bits of the immediate.

demo code [[openpower/sv/grevlut.py]]

def lut2(imm, a, b):
idx = b << 1 | a
return (imm>>idx) & 1

def dorow(imm8, step_i, chunk_size):
step_o = 0
for j in range(64):

if (j&chunk_size) == 0:

https://www.felixcloutier.com/x86/pmovmskb

CHAPTER 3. BITMANIP OPS 284

imm = (imm8 & 0b1111)
else:

imm = (imm8>>4)
a = (step_i>>j)&1
b = (step_i>>(j ^ chunk_size))&1
res = lut2(imm, a, b)
#print(j, bin(imm), a, b, res)
step_o |= (res<<j)

#print (" ", chunk_size, bin(step_o))
return step_o

def grevlut64(RA, RB, imm, iv):
x = 0
if RA is None: # RA=0

x = 0x5555555555555555
else:

x = RA
if (iv): x = ~x;
shamt = RB & 63;
for i in range(6):

step = 1<<i
if (shamt & step):

x = dorow(imm, x, step)
return x & ((1<<64)-1)

A variant may specify different LUT-pairs per row, using one byte of RB for each. If it is desired that a particular
row-crossover shall not be applied it is a simple matter to set the appropriate LUT-pair in RB to effect an
identity transform for that row (0b11001010).

uint64_t grevlutr(uint64_t RA, uint64_t RB, bool iv, bool is32b)
{

uint64_t x = 0x5555_5555_5555_5555;
if (RA != 0) x = GPR(RA);
if (iv) x = ~x;
for i in 0 to (6-is32b)

step = 1<<i
imm = (RB>>(i*8))&0xff
x = dorow(imm, x, step, is32b)

return x;
}

0.5 6.10 11.15 16.20 21..28 29.30 31 name Form
NN RT RA s0-4 im0-7 1 iv s5 grevlogi
NN RT RA RB im0-7 01 0 grevlog

An equivalent to grevlogw may be synthesised by setting the appropriate bits in RB to set the top half of RT to
zero. Thus an explicit grevlogw instruction is not necessary.

3.9 xperm

based on RV bitmanip.

RA contains a vector of indices to select parts of RB to be copied to RT. The immediate-variant allows up to an
8 bit pattern (repeated) to be targetted at different parts of RT.

CHAPTER 3. BITMANIP OPS 285

xperm shares some similarity with one of the uses of bmator in that xperm indices are binary addressing where
bitmator may be considered to be unary addressing.

uint_xlen_t xpermi(uint8_t imm8, uint_xlen_t RB, int sz_log2)
{

uint_xlen_t r = 0;
uint_xlen_t sz = 1LL << sz_log2;
uint_xlen_t mask = (1LL << sz) - 1;
uint_xlen_t RA = imm8 | imm8<<8 | ... | imm8<<56;
for (int i = 0; i < XLEN; i += sz) {

uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
if (pos < XLEN)

r |= ((RB >> pos) & mask) << i;
}
return r;

}
uint_xlen_t xperm(uint_xlen_t RA, uint_xlen_t RB, int sz_log2)
{

uint_xlen_t r = 0;
uint_xlen_t sz = 1LL << sz_log2;
uint_xlen_t mask = (1LL << sz) - 1;
for (int i = 0; i < XLEN; i += sz) {

uint_xlen_t pos = ((RA >> i) & mask) << sz_log2;
if (pos < XLEN)

r |= ((RB >> pos) & mask) << i;
}
return r;

}
uint_xlen_t xperm_n (uint_xlen_t RA, uint_xlen_t RB)
{ return xperm(RA, RB, 2); }
uint_xlen_t xperm_b (uint_xlen_t RA, uint_xlen_t RB)
{ return xperm(RA, RB, 3); }
uint_xlen_t xperm_h (uint_xlen_t RA, uint_xlen_t RB)
{ return xperm(RA, RB, 4); }
uint_xlen_t xperm_w (uint_xlen_t RA, uint_xlen_t RB)
{ return xperm(RA, RB, 5); }

3.10 bitmatrix

bmatflip and bmatxor is found in the Cray XMT, and in x86 is known as GF2P8AFFINEQB. uses:

• https://gist.github.com/animetosho/d3ca95da2131b5813e16b5bb1b137ca0
• SM4, Reed Solomon, RAID6 https://stackoverflow.com/questions/59124720/what-are-the-avx-512-galois-field-related-instructions-for
• Vector bit-reverse https://reviews.llvm.org/D91515?id=305411
• Affine Inverse https://github.com/HJLebbink/asm-dude/wiki/GF2P8AFFINEINVQB

0.5 6.10 11.15 16.20 21 22.23 24. . . .30 31 name Form
NN RS RA im04 im5 1 1 im67 00 110 Rc bmatxori TODO

uint64_t bmatflip(uint64_t RA)
{

uint64_t x = RA;
x = shfl64(x, 31);
x = shfl64(x, 31);

https://gist.github.com/animetosho/d3ca95da2131b5813e16b5bb1b137ca0
https://stackoverflow.com/questions/59124720/what-are-the-avx-512-galois-field-related-instructions-for
https://reviews.llvm.org/D91515?id=305411
https://github.com/HJLebbink/asm-dude/wiki/GF2P8AFFINEINVQB

CHAPTER 3. BITMANIP OPS 286

x = shfl64(x, 31);
return x;

}

uint64_t bmatxori(uint64_t RS, uint64_t RA, uint8_t imm) {
// transpose of RA
uint64_t RAt = bmatflip(RA);
uint8_t u[8]; // rows of RS
uint8_t v[8]; // cols of RA
for (int i = 0; i < 8; i++) {

u[i] = RS >> (i*8);
v[i] = RAt >> (i*8);

}
uint64_t bit, x = 0;
for (int i = 0; i < 64; i++) {

bit = (imm >> (i%8)) & 1;
bit ^= pcnt(u[i / 8] & v[i % 8]) & 1;
x |= bit << i;

}
return x;

}

uint64_t bmatxor(uint64_t RA, uint64_t RB) {
return bmatxori(RA, RB, 0xff)

}

uint64_t bmator(uint64_t RA, uint64_t RB) {
// transpose of RB
uint64_t RBt = bmatflip(RB);
uint8_t u[8]; // rows of RA
uint8_t v[8]; // cols of RB
for (int i = 0; i < 8; i++) {

u[i] = RA >> (i*8);
v[i] = RBt >> (i*8);

}
uint64_t x = 0;
for (int i = 0; i < 64; i++) {

if ((u[i / 8] & v[i % 8]) != 0)
x |= 1LL << i;

}
return x;

}

uint64_t bmatand(uint64_t RA, uint64_t RB) {
// transpose of RB
uint64_t RBt = bmatflip(RB);
uint8_t u[8]; // rows of RA
uint8_t v[8]; // cols of RB
for (int i = 0; i < 8; i++) {

u[i] = RA >> (i*8);
v[i] = RBt >> (i*8);

}
uint64_t x = 0;
for (int i = 0; i < 64; i++) {

if ((u[i / 8] & v[i % 8]) == 0xff)

CHAPTER 3. BITMANIP OPS 287

x |= 1LL << i;
}
return x;

}

3.11 Introduction to Carry-less and GF arithmetic

• obligatory xkcd https://xkcd.com/2595/

There are three completely separate types of Galois-Field-based arithmetic that we implement which are not
well explained even in introductory literature. A slightly oversimplified explanation is followed by more accurate
descriptions:

• GF(2) carry-less binary arithmetic. this is not actually a Galois Field, but is accidentally referred to as
GF(2) - see below as to why.

• GF(p) modulo arithmetic with a Prime number, these are “proper” Galois Fields
• GF(2ˆN) carry-less binary arithmetic with two limits: modulo a power-of-2 (2ˆN) and a second “reducing”

polynomial (similar to a prime number), these are said to be GF(2ˆN) arithmetic.

further detailed and more precise explanations are provided below

• Polynomials with coefficients in GF(2) (aka. Carry-less arithmetic – the cl* instructions). This isn’t
actually a Galois Field, but its coefficients are. This is basically binary integer addition, subtraction, and
multiplication like usual, except that carries aren’t propagated at all, effectively turning both addition and
subtraction into the bitwise xor operation. Division and remainder are defined to match how addition and
multiplication works.

• Galois Fields with a prime size (aka. GF(p) or Prime Galois Fields – the gfp* instructions). This is
basically just the integers mod p.

• Galois Fields with a power-of-a-prime size (aka. GF(pˆn) or GF(q) where q == pˆn for prime p and
integer n > 0). We only implement these for p == 2, called Binary Galois Fields (GF(2ˆn) – the gfb*
instructions). For any prime p, GF(pˆn) is implemented as polynomials with coefficients in GF(p) and
degree < n, where the polynomials are the remainders of dividing by a specificly chosen polynomial in
GF(p) called the Reducing Polynomial (we will denote that by red_poly). The Reducing Polynomial must
be an irreducable polynomial (like primes, but for polynomials), as well as have degree n. All GF(pˆn)
for the same p and n are isomorphic to each other – the choice of red_poly doesn’t affect GF(pˆn)’s
mathematical shape, all that changes is the specific polynomials used to implement GF(pˆn).

Many implementations and much of the literature do not make a clear distinction between these three categories,
which makes it confusing to understand what their purpose and value is.

• carry-less multiply is extremely common and is used for the ubiquitous CRC32 algorithm. [TODO add
many others, helps justify to ISA WG]

• GF(2ˆN) forms the basis of Rijndael (the current AES standard) and has significant uses throughout
cryptography

• GF(p) is the basis again of a significant quantity of algorithms (TODO, list them, jacob knows what they
are), even though the modulo is limited to be below 64-bit (size of a scalar int)

3.12 Instructions for Carry-less Operations

aka. Polynomials with coefficients in GF(2)

Carry-less addition/subtraction is simply XOR, so a cladd instruction is not provided since the xor[i] instruction
can be used instead.

These are operations on polynomials with coefficients in GF(2), with the polynomial’s coefficients packed into
integers with the following algorithm:

https://xkcd.com/2595/

CHAPTER 3. BITMANIP OPS 288

"""Polynomials with GF(2) coefficients."""

def pack_poly(poly):
"""`poly` is a list where `poly[i]` is the coefficient for `x ** i`"""
retval = 0
for i, v in enumerate(poly):

retval |= v << i
return retval

def unpack_poly(v):
"""returns a list `poly`, where `poly[i]` is the coefficient for `x ** i`.
"""
poly = []
while v != 0:

poly.append(v & 1)
v >>= 1

return poly

3.12.1 Carry-less Multiply Instructions

based on RV bitmanip see https://en.wikipedia.org/wiki/CLMUL_instruction_set and https://www.
felixcloutier.com/x86/pclmulqdq and https://en.m.wikipedia.org/wiki/Carry-less_product

They are worth adding as their own non-overwrite operations (in the same pipeline).

3.12.1.1 clmul Carry-less Multiply

def clmul(a, b):
x = 0
i = 0
while b >> i != 0:

if (b >> i) & 1:
x ^= a << i

i += 1
return x

3.12.1.2 clmulh Carry-less Multiply High

from nmigen_gf.reference.clmul import clmul

def clmulh(a, b, XLEN):
return clmul(a, b) >> XLEN

3.12.1.3 clmulr Carry-less Multiply (Reversed)

Useful for CRCs. Equivalent to bit-reversing the result of clmul on bit-reversed inputs.

from nmigen_gf.reference.clmul import clmul

https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://www.felixcloutier.com/x86/pclmulqdq
https://www.felixcloutier.com/x86/pclmulqdq
https://en.m.wikipedia.org/wiki/Carry-less_product

CHAPTER 3. BITMANIP OPS 289

def clmulh(a, b, XLEN):
return clmul(a, b) >> (XLEN - 1)

3.12.2 clmadd Carry-less Multiply-Add

clmadd RT, RA, RB, RC

(RT) = clmul((RA), (RB)) ^ (RC)

3.12.3 cltmadd Twin Carry-less Multiply-Add (for FFTs)

Used in combination with SV FFT REMAP to perform a full Discrete Fourier Transform of Polynomials over
GF(2) in-place. Possible by having 3-in 2-out, to avoid the need for a temp register. RS is written to as well as
RT.

Note: Polynomials over GF(2) are a Ring rather than a Field, so, because the definition of the Inverse Discrete
Fourier Transform involves calculating a multiplicative inverse, which may not exist in every Ring, therefore the
Inverse Discrete Fourier Transform may not exist. (AFAICT the number of inputs to the IDFT must be odd for
the IDFT to be defined for Polynomials over GF(2). TODO: check with someone who knows for sure if that’s
correct.)

cltmadd RT, RA, RB, RC

TODO: add link to explanation for where RS comes from.

a = (RA)
c = (RC)
read all inputs before writing to any outputs in case
an input overlaps with an output register.
(RT) = clmul(a, (RB)) ^ c
(RS) = a ^ c

3.12.4 cldivrem Carry-less Division and Remainder

cldivrem isn’t an actual instruction, but is just used in the pseudo-code for other instructions.

from nmigen_gf.reference.log2 import floor_log2

def cldivrem(n, d, width):
""" Carry-less Division and Remainder.

`n` and `d` are integers, `width` is the number of bits needed to hold
each input/output.
Returns a tuple `q, r` of the quotient and remainder.

"""
assert d != 0, "TODO: decide what happens on division by zero"
assert 0 <= n < 1 << width, f"bad n (doesn't fit in {width}-bit uint)"
assert 0 <= d < 1 << width, f"bad d (doesn't fit in {width}-bit uint)"
r = n
q = 0
d <<= width
for _ in range(width):

d >>= 1
q <<= 1
if degree(d) == degree(r):

r ^= d

CHAPTER 3. BITMANIP OPS 290

q |= 1
return q, r

def degree(v):
"""the degree of the GF(2) polynomial `v`. `v` is a non-negative integer.
"""
if v == 0:

return -1
return floor_log2(v)

3.12.5 cldiv Carry-less Division

cldiv RT, RA, RB

n = (RA)
d = (RB)
q, r = cldivrem(n, d, width=XLEN)
(RT) = q

3.12.6 clrem Carry-less Remainder

clrem RT, RA, RB

n = (RA)
d = (RB)
q, r = cldivrem(n, d, width=XLEN)
(RT) = r

3.13 Instructions for Binary Galois Fields GF(2ˆm)

see:

• https://courses.csail.mit.edu/6.857/2016/files/ffield.py
• https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture7.pdf
• https://foss.heptapod.net/math/libgf2/-/blob/branch/default/src/libgf2/gf2.py

Binary Galois Field addition/subtraction is simply XOR, so a gfbadd instruction is not provided since the
xor[i] instruction can be used instead.

3.13.1 GFBREDPOLY SPR – Reducing Polynomial

In order to save registers and to make operations orthogonal with standard arithmetic, the reducing polynomial
is stored in a dedicated SPR GFBREDPOLY. This also allows hardware to pre-compute useful parameters (such as
the degree, or look-up tables) based on the reducing polynomial, and store them alongside the SPR in hidden
registers, only recomputing them whenever the SPR is written to, rather than having to recompute those values
for every instruction.

Because Galois Fields require the reducing polynomial to be an irreducible polynomial, that guarantees that any
polynomial of degree > 1 must have the LSB set, since otherwise it would be divisible by the polynomial x,
making it reducible, making whatever we’re working on no longer a Field. Therefore, we can reuse the LSB to
indicate degree == XLEN.

https://courses.csail.mit.edu/6.857/2016/files/ffield.py
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture7.pdf
https://foss.heptapod.net/math/libgf2/-/blob/branch/default/src/libgf2/gf2.py

CHAPTER 3. BITMANIP OPS 291

from nmigen_gf.reference.state import ST

def decode_reducing_polynomial():
"""returns the decoded reducing polynomial as an integer.

Note: the returned integer is `XLEN + 1` bits wide.
"""
v = ST.GFBREDPOLY & ((1 << ST.XLEN) - 1) # mask to XLEN bits
if v == 0 or v == 2: # GF(2)

return 0b10 # degree = 1, poly = x
if (v & 1) == 0:

all reducing polynomials of degree > 1 must have the LSB set,
because they must be irreducible polynomials (meaning they
can't be factored), if the LSB was clear, then they would
have `x` as a factor. Therefore, we can reuse the LSB clear
to instead mean the polynomial has degree XLEN.
v |= 1 << ST.XLEN
v |= 1 # LSB must be set

return v

3.13.2 gfbredpoly – Set the Reducing Polynomial SPR GFBREDPOLY

unless this is an immediate op, mtspr is completely sufficient.

from nmigen_gf.reference.state import ST

def gfbredpoly(immed):
TODO: figure out how `immed` should be encoded
ST.GFBREDPOLY = immed

3.13.3 gfbmul – Binary Galois Field GF(2ˆm) Multiplication

gfbmul RT, RA, RB

from nmigen_gf.reference.state import ST
from nmigen_gf.reference.decode_reducing_polynomial import decode_reducing_polynomial
from nmigen_gf.reference.clmul import clmul
from nmigen_gf.reference.cldivrem import cldivrem

def gfbmul(a, b):
product = clmul(a, b)
red_poly = decode_reducing_polynomial()
q, r = cldivrem(product, red_poly, width=ST.XLEN + 1)
return r

3.13.4 gfbmadd – Binary Galois Field GF(2ˆm) Multiply-Add

gfbmadd RT, RA, RB, RC

from nmigen_gf.reference.state import ST
from nmigen_gf.reference.decode_reducing_polynomial import decode_reducing_polynomial
from nmigen_gf.reference.clmul import clmul

CHAPTER 3. BITMANIP OPS 292

from nmigen_gf.reference.cldivrem import cldivrem

def gfbmadd(a, b, c):
v = clmul(a, b) ^ c
red_poly = decode_reducing_polynomial()
q, r = cldivrem(v, red_poly, width=ST.XLEN + 1)
return r

3.13.5 gfbtmadd – Binary Galois Field GF(2ˆm) Twin Multiply-Add (for FFT)

Used in combination with SV FFT REMAP to perform a full GF(2ˆm) Discrete Fourier Transform in-place.
Possible by having 3-in 2-out, to avoid the need for a temp register. RS is written to as well as RT.

gfbtmadd RT, RA, RB, RC

TODO: add link to explanation for where RS comes from.

a = (RA)
c = (RC)
read all inputs before writing to any outputs in case
an input overlaps with an output register.
(RT) = gfbmadd(a, (RB), c)
use gfbmadd again since it reduces the result
(RS) = gfbmadd(a, 1, c) # "a * 1 + c"

3.13.6 gfbinv – Binary Galois Field GF(2ˆm) Inverse

gfbinv RT, RA

from nmigen_gf.reference.decode_reducing_polynomial import decode_reducing_polynomial
from nmigen_gf.reference.cldivrem import degree

def gfbinv(a):
"""compute the GF(2^m) inverse of `a`."""
Derived from Algorithm 3, from [7] in:
https://ftp.libre-soc.org/ARITH18_Kobayashi.pdf

s = decode_reducing_polynomial()
m = degree(s)
assert a >> m == 0, "`a` is out-of-range"
r = a
v = 0
u = 1
delta = 0

for _ in range(2 * m):
could use count-leading-zeros here to skip ahead
if r >> m == 0: # if the MSB of `r` is zero

r <<= 1
u <<= 1
delta += 1

else:
if s >> m != 0: # if the MSB of `s` isn't zero

CHAPTER 3. BITMANIP OPS 293

s ^= r
v ^= u

s <<= 1
if delta == 0:

r, s = s, r # swap r and s
u, v = v << 1, u # shift v and swap
delta = 1

else:
u >>= 1
delta -= 1

if a == 0:
we specifically choose 0 as the result of inverting 0, rather than an
error or undefined, since that's what Rijndael needs.
return 0

return u

3.14 Instructions for Prime Galois Fields GF(p)

3.14.1 GFPRIME SPR – Prime Modulus For gfp* Instructions

3.14.2 gfpadd Prime Galois Field GF(p) Addition

gfpadd RT, RA, RB

from nmigen_gf.reference.state import ST

def gfpadd(a, b):
return (a + b) % ST.GFPRIME

the addition happens on infinite-precision integers

3.14.3 gfpsub Prime Galois Field GF(p) Subtraction

gfpsub RT, RA, RB

from nmigen_gf.reference.state import ST

def gfpsub(a, b):
return (a - b) % ST.GFPRIME

the subtraction happens on infinite-precision integers

3.14.4 gfpmul Prime Galois Field GF(p) Multiplication

gfpmul RT, RA, RB

from nmigen_gf.reference.state import ST

def gfpmul(a, b):
return (a * b) % ST.GFPRIME

the multiplication happens on infinite-precision integers

CHAPTER 3. BITMANIP OPS 294

3.14.5 gfpinv Prime Galois Field GF(p) Invert

gfpinv RT, RA

Some potential hardware implementations are found in: https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.90.5233&rep=rep1&type=pdf

from nmigen_gf.reference.state import ST

def gfpinv(a):
based on Algorithm ExtEucdInv from:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.5233&rep=rep1&type=pdf
designed to be dead-easy (and efficient) to implement in hardware
p = ST.GFPRIME
assert p >= 2, "GFPRIME isn't a prime"
assert a != 0, "TODO: decide what happens for division by zero"
assert isinstance(a, int) and 0 < a < p, "a out of range"
if p == 2:

return 1 # the only value possible

initial values`
u = p
v = a
r = 0
s = 1

main loop
while v > 0:

implementations could use count-zeros on
both u and r to save cycles
if u & 1 == 0:

if r & 1 != 0:
r += p

u >>= 1
r >>= 1
continue # loop again

implementations could use count-zeros on
both v and s to save cycles
if v & 1 == 0:

if s & 1 != 0:
s += p

v >>= 1
s >>= 1
continue # loop again

both LSB of u and v are 1
x = u - v
if x > 0:

u = x
r -= s
if r < 0:

r += p
else:

v = -x
s -= r
if s < 0:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.5233&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.5233&rep=rep1&type=pdf

CHAPTER 3. BITMANIP OPS 295

s += p

make sure result r within modulo range 0 <= r <= p
if r > p:

r -= p
if r < 0:

r += p
return r

3.14.6 gfpmadd Prime Galois Field GF(p) Multiply-Add

gfpmadd RT, RA, RB, RC

from nmigen_gf.reference.state import ST

def gfpmadd(a, b, c):
return (a * b + c) % ST.GFPRIME

the multiplication and addition happens on infinite-precision integers

3.14.7 gfpmsub Prime Galois Field GF(p) Multiply-Subtract

gfpmsub RT, RA, RB, RC

from nmigen_gf.reference.state import ST

def gfpmsub(a, b, c):
return (a * b - c) % ST.GFPRIME

the multiplication and subtraction happens on infinite-precision integers

3.14.8 gfpmsubr Prime Galois Field GF(p) Multiply-Subtract-Reversed

gfpmsubr RT, RA, RB, RC

from nmigen_gf.reference.state import ST

def gfpmsubr(a, b, c):
return (c - a * b) % ST.GFPRIME

the multiplication and subtraction happens on infinite-precision integers

3.14.9 gfpmaddsubr Prime Galois Field GF(p) Multiply-Add and Multiply-Sub-
Reversed (for FFT)

Used in combination with SV FFT REMAP to perform a full Number-Theoretic-Transform in-place. Possible by
having 3-in 2-out, to avoid the need for a temp register. RS is written to as well as RT.

gfpmaddsubr RT, RA, RB, RC

TODO: add link to explanation for where RS comes from.

CHAPTER 3. BITMANIP OPS 296

factor1 = (RA)
factor2 = (RB)
term = (RC)
read all inputs before writing to any outputs in case
an input overlaps with an output register.
(RT) = gfpmadd(factor1, factor2, term)
(RS) = gfpmsubr(factor1, factor2, term)

3.15 Already in POWER ISA or subsumed

Lists operations either included as part of other bitmanip operations, or are already in Power ISA.

3.15.1 cmix

based on RV bitmanip, covered by ternlog bitops

uint_xlen_t cmix(uint_xlen_t RA, uint_xlen_t RB, uint_xlen_t RC) {
return (RA & RB) | (RC & ~RB);

}

3.15.2 count leading/trailing zeros with mask

in v3.1 p105

count = 0
do i = 0 to 63 if((RB)i=1) then do
if((RS)i=1) then break end end count ← count + 1
RA ← EXTZ64(count)

3.15.3 bit deposit

pdepd VRT,VRA,VRB, identical to RV bitmamip bdep, found already in v3.1 p106

do while(m < 64)
if VSR[VRB+32].dword[i].bit[63-m]=1 then do

result = VSR[VRA+32].dword[i].bit[63-k]
VSR[VRT+32].dword[i].bit[63-m] = result
k = k + 1

m = m + 1

uint_xlen_t bdep(uint_xlen_t RA, uint_xlen_t RB)
{

uint_xlen_t r = 0;
for (int i = 0, j = 0; i < XLEN; i++)

if ((RB >> i) & 1) {
if ((RA >> j) & 1)

r |= uint_xlen_t(1) << i;
j++;

}
return r;

}

CHAPTER 3. BITMANIP OPS 297

3.15.4 bit extract

other way round: identical to RV bext: pextd, found in v3.1 p196

uint_xlen_t bext(uint_xlen_t RA, uint_xlen_t RB)
{

uint_xlen_t r = 0;
for (int i = 0, j = 0; i < XLEN; i++)

if ((RB >> i) & 1) {
if ((RA >> i) & 1)

r |= uint_xlen_t(1) << j;
j++;

}
return r;

}

3.15.5 centrifuge

found in v3.1 p106 so not to be added here

ptr0 = 0
ptr1 = 0
do i = 0 to 63

if((RB)i=0) then do
resultptr0 = (RS)i

end
ptr0 = ptr0 + 1
if((RB)63-i==1) then do

result63-ptr1 = (RS)63-i
end
ptr1 = ptr1 + 1

RA = result

3.15.6 bit to byte permute

similar to matrix permute in RV bitmanip, which has XOR and OR variants, these perform a transpose (bmatflip).
TODO this looks VSX is there a scalar variant in v3.0/1 already

do j = 0 to 7
do k = 0 to 7

b = VSR[VRB+32].dword[i].byte[k].bit[j]
VSR[VRT+32].dword[i].byte[j].bit[k] = b

3.15.7 grev

superceded by grevlut

based on RV bitmanip, this is also known as a butterfly network. however where a butterfly network allows
setting of every crossbar setting in every row and every column, generalised-reverse (grev) only allows a per-row
decision: every entry in the same row must either switch or not-switch.

uint64_t grev64(uint64_t RA, uint64_t RB)
{

uint64_t x = RA;
int shamt = RB & 63;

CHAPTER 3. BITMANIP OPS 298

if (shamt & 1) x = ((x & 0x5555555555555555LL) << 1) |
((x & 0xAAAAAAAAAAAAAAAALL) >> 1);

if (shamt & 2) x = ((x & 0x3333333333333333LL) << 2) |
((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);

if (shamt & 4) x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |
((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);

if (shamt & 8) x = ((x & 0x00FF00FF00FF00FFLL) << 8) |
((x & 0xFF00FF00FF00FF00LL) >> 8);

if (shamt & 16) x = ((x & 0x0000FFFF0000FFFFLL) << 16) |
((x & 0xFFFF0000FFFF0000LL) >> 16);

if (shamt & 32) x = ((x & 0x00000000FFFFFFFFLL) << 32) |
((x & 0xFFFFFFFF00000000LL) >> 32);

return x;
}

3.15.8 gorc

based on RV bitmanip, gorc is superceded by grevlut

uint32_t gorc32(uint32_t RA, uint32_t RB)
{

uint32_t x = RA;
int shamt = RB & 31;
if (shamt & 1) x |= ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1);
if (shamt & 2) x |= ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
if (shamt & 4) x |= ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4);
if (shamt & 8) x |= ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8);
if (shamt & 16) x |= ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16);
return x;

}
uint64_t gorc64(uint64_t RA, uint64_t RB)
{

uint64_t x = RA;
int shamt = RB & 63;
if (shamt & 1) x |= ((x & 0x5555555555555555LL) << 1) |

((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
if (shamt & 2) x |= ((x & 0x3333333333333333LL) << 2) |

((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
if (shamt & 4) x |= ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) |

((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
if (shamt & 8) x |= ((x & 0x00FF00FF00FF00FFLL) << 8) |

((x & 0xFF00FF00FF00FF00LL) >> 8);
if (shamt & 16) x |= ((x & 0x0000FFFF0000FFFFLL) << 16) |

((x & 0xFFFF0000FFFF0000LL) >> 16);
if (shamt & 32) x |= ((x & 0x00000000FFFFFFFFLL) << 32) |

((x & 0xFFFFFFFF00000000LL) >> 32);
return x;

}

3.16 Appendix

see [[bitmanip/appendix]]

Chapter 4

FP/Int Conversion ops

[[!tag standards]]

Note on considered alternative naming schemes: we decided to switch to using the reduced mnemonic naming
scheme (over some people’s objections) since it would be 5 instructions instead of dozens, though we did consider
trying to match PowerISA’s existing naming scheme for the instructions rather than only for the instruction
aliases. https://bugs.libre-soc.org/show_bug.cgi?id=1015#c7

4.1 FPR-to-GPR and GPR-to-FPR

TODO special constants instruction (e, tau/N, ln 2, sqrt 2, etc.) – exclude any constants available through fmvis

Draft Status under development, for submission as an RFC

Links:

• https://bugs.libre-soc.org/show_bug.cgi?id=650
• https://bugs.libre-soc.org/show_bug.cgi?id=230#c71
• https://bugs.libre-soc.org/show_bug.cgi?id=230#c74
• https://bugs.libre-soc.org/show_bug.cgi?id=230#c76
• https://bugs.libre-soc.org/show_bug.cgi?id=887 fmvis
• https://bugs.libre-soc.org/show_bug.cgi?id=1015 int-fp RFC
• [[int_fp_mv/appendix]]
• [[sv/rfc/ls002]] - fmvis and fishmv External RFC Formal Submission
• [[sv/rfc/ls006]] - int-fp-mv External RFC Formal Submission

Trademarks:

• Rust is a Trademark of the Rust Foundation
• Java and JavaScript are Trademarks of Oracle
• LLVM is a Trademark of the LLVM Foundation
• SPIR-V is a Trademark of the Khronos Group
• OpenCL is a Trademark of Apple, Inc.

Referring to these Trademarks within this document is by necessity, in order to put the semantics of each
language into context, and is considered “fair use” under Trademark Law.

Introduction:

High-performance CPU/GPU software needs to often convert between integers and floating-point, therefore
fast conversion/data-movement instructions are needed. Also given that initialisation of floats tends to take up
considerable space (even to just load 0.0) the inclusion of two compact format float immediate instructions is

299

https://bugs.libre-soc.org/show_bug.cgi?id=1015#c7
https://bugs.libre-soc.org/show_bug.cgi?id=650
https://bugs.libre-soc.org/show_bug.cgi?id=230#c71
https://bugs.libre-soc.org/show_bug.cgi?id=230#c74
https://bugs.libre-soc.org/show_bug.cgi?id=230#c76
https://bugs.libre-soc.org/show_bug.cgi?id=887
https://bugs.libre-soc.org/show_bug.cgi?id=1015

CHAPTER 4. FP/INT CONVERSION OPS 300

up for consideration using 16-bit immediates. BF16 is one of the formats: a second instruction allows a full
accuracy FP32 to be constructed.

Libre-SOC will be compliant with the Scalar Floating-Point Subset (SFFS) i.e. is not implementing
VMX/VSX, and with its focus on modern 3D GPU hybrid workloads represents an important new poten-
tial use-case for OpenPOWER.

Prior to the formation of the Compliancy Levels first introduced in v3.0C and v3.1 the progressive historic
development of the Scalar parts of the Power ISA assumed that VSX would always be there to complement it.
However With VMX/VSX not available in the newly-introduced SFFS Compliancy Level, the existing non-VSX
conversion/data-movement instructions require a Vector of load/store instructions (slow and expensive) to
transfer data between the FPRs and the GPRs. For a modern 3D GPU this kills any possibility of a competitive
edge. Also, because SimpleV needs efficient scalar instructions in order to generate efficient vector instructions,
adding new instructions for data-transfer/conversion between FPRs and GPRs multiplies the savings.

In addition, the vast majority of GPR <-> FPR data-transfers are as part of a FP <-> Integer conversion
sequence, therefore reducing the number of instructions required is a priority.

Therefore, we are proposing adding:

• FPR load-immediate instructions, one equivalent to BF16, the other increasing accuracy to FP32
• FPR <-> GPR data-transfer instructions that just copy bits without conversion
• FPR <-> GPR combined data-transfer/conversion instructions that do Integer <-> FP conversions

If adding new Integer <-> FP conversion instructions, the opportunity may be taken to modernise the instructions
and make them well-suited for common/important conversion sequences:

• Int -> Float
– standard IEEE754 - used by most languages and CPUs

• Float -> Int
– standard OpenPOWER - saturation with NaN converted to minimum valid integer
– Java/Saturating - saturation with NaN converted to 0
– JavaScript - modulo wrapping with Inf/NaN converted to 0

The assembly listings in the [[int_fp_mv/appendix]] show how costly some of these language-specific conversions
are: JavaScript, the worst case, is 32 scalar instructions including seven branch instructions.

4.2 Proposed New Scalar Instructions

All of the following instructions use the standard OpenPower conversion to/from 64-bit float format when
reading/writing a 32-bit float from/to a FPR. All integers however are sourced/stored in the GPR.

Integer operands and results being in the GPR is the key differentiator between the proposed instructions (the
entire rationale) compared to existing Scalar Power ISA. In all existing Power ISA Scalar conversion instructions,
all operands are FPRs, even if the format of the source or destination data is actually a scalar integer.

(The existing Scalar instructions being FP-FP only is based on an assumption that VSX will be implemented,
and VSX is not part of the SFFS Compliancy Level. An earlier version of the Power ISA used to have similar
FPR<->GPR instructions to these: they were deprecated due to this incorrect assumption that VSX would always
be present).

Note that source and destination widths can be overridden by SimpleV SVP64, and that SVP64 also has
Saturation Modes in addition to those independently described here. SVP64 Overrides and Saturation work
on both Fixed and Floating Point operands and results. The interactions with SVP64 are explained in the
[[int_fp_mv/appendix]]

CHAPTER 4. FP/INT CONVERSION OPS 301

4.3 Float load immediate

These are like a variant of fmvfg and oris, combined. Power ISA currently requires a large number of instructions
to get Floating Point constants into registers. fmvis on its own is equivalent to BF16 to FP32/64 conversion,
but if followed up by fishmv an additional 16 bits of accuracy in the mantissa may be achieved.

These instructions always save resources compared to FP-load for exactly the same reason that li saves
resources: an L1-Data-Cache and memory read is avoided.

IBM may consider it worthwhile to extend these two instructions to v3.1 Prefixed (pfmvis and pfishmv: 8RR,
imm0 extended). If so it is recommended that pfmvis load a full FP32 immediate and pfishmv supplies the
three high missing exponent bits (numbered 8 to 10) and the lower additional 29 mantissa bits (23 to 51) needed
to construct a full FP64 immediate. Strictly speaking the sequence fmvis fishmv pfishmv achieves the same
effect in the same number of bytes as pfmvis pfishmv, making pfmvis redundant.

Just as Floating-point Load does not set FP Flags neither does fmvis or fishmv. As fishmv is specifically intended
to work in conjunction with fmvis to provide additional accuracy, all bits other than those which would have been
set by a prior fmvis instruction are deliberately ignored. (If these instructions involved reading from registers
rather than immediates it would be a different story).

4.3.1 Load BF16 Immediate

fmvis FRS, D

Reinterprets D << 16 as a 32-bit float, which is then converted to a 64-bit float and written to FRS. This is
equivalent to reinterpreting D as a BF16 and converting to 64-bit float. There is no need for an Rc=1 variant
because this is an immediate loading instruction.

Example:

clearing a FPR
fmvis f4, 0 # writes +0.0 to f4
loading handy constants
fmvis f4, 0x8000 # writes -0.0 to f4
fmvis f4, 0x3F80 # writes +1.0 to f4
fmvis f4, 0xBF80 # writes -1.0 to f4
fmvis f4, 0xBFC0 # writes -1.5 to f4
fmvis f4, 0x7FC0 # writes +qNaN to f4
fmvis f4, 0x7F80 # writes +Infinity to f4
fmvis f4, 0xFF80 # writes -Infinity to f4
fmvis f4, 0x3FFF # writes +1.9921875 to f4

clearing 128 FPRs with 2 SVP64 instructions
by issuing 32 vec4 (subvector length 4) ops
setvli VL=MVL=32
sv.fmvis/vec4 f0, 0 # writes +0.0 to f0-f127

Important: If the float load immediate instruction(s) are left out, change all GPR to FPR conversion instructions
to instead write +0.0 if RA is register 0, at least allowing clearing FPRs.

fmvis fits with DX-Form:

0-5 6-10 11-15 16-25 26-30 31 Form
Major FRS d1 d0 XO d2 DX-Form

Pseudocode:

CHAPTER 4. FP/INT CONVERSION OPS 302

bf16 = d0 || d1 || d2 # create BF16 immediate
fp32 = bf16 || [0]*16 # convert BF16 to FP32
FRS = DOUBLE(fp32) # convert FP32 to FP64

Special registers altered:

None

4.3.2 Float Immediate Second-Half MV

fishmv FRS, D

DX-Form:

0-5 6-10 11-15 16-25 26-30 31 Form
Major FRS d1 d0 XO d2 DX-Form

Strategically similar to how oris is used to construct 32-bit Integers, an additional 16-bits of immediate is
inserted into FRS to extend its accuracy to a full FP32 (stored as usual in FP64 Format within the FPR). If
a prior fmvis instruction had been used to set the upper 16-bits of an FP32 value, fishmv contains the lower
16-bits.

The key difference between using li and oris to construct 32-bit GPR Immediates and fishmv is that the
fmvis will have converted the BF16 immediate to FP64 (Double) format. This is taken into consideration as can
be seen in the pseudocode below.

Pseudocode:

fp32 <- SINGLE((FRS)) # convert to FP32
fp32[16:31] <- d0 || d1 || d2 # replace LSB half
FRS <- DOUBLE(fp32) # convert back to FP64

Special registers altered:

None

This instruction performs a Read-Modify-Write. FRS is read, the additional 16 bit immediate inserted,
and the result also written to FRS

Example:

these two combined instructions write 0x3f808000
into f4 as an FP32 to be converted to an FP64.
actual contents in f4 after conversion: 0x3ff0_1000_0000_0000
first the upper bits, happens to be +1.0
fmvis f4, 0x3F80 # writes +1.0 to f4
now write the lower 16 bits of an FP32
fishmv f4, 0x8000 # writes +1.00390625 to f4

[[!inline pages=“openpower/sv/int_fp_mv/moves_and_conversions” raw=yes]]

Chapter 5

FP Class ops

5.1 fclass

based on xvtstdcsp v3.0B p760 the instruction performs analysis of the FP number to determine if it is Infinity,
NaN, Denormalised or Zero and if so which sign. When VSX is not implemented these instructions become
necessary.

unlike xvtstdcsp the result is stored in a Condition Register Field specified by BF. this allows it to be used as a
predicate mask. setb may be used to create the equivalent of xvtstdcsp if desired.

The CR Field bits are set in a reasonably logical fashion:

• BF.EQ is set if FRB is zero
• BF.LE is set if FRB is non-normalises
• BF.GE is set if FRB is infinite
• BF.SO is set if FRB is NaN

0.5 6.8 9..15 16.20 21. . . 30 31 name Form
PO BF DCMX FRB XO dm2 fptstsp X-Form

dcmx <- DCMX || dm2
src <- (FRB)[32:63]
sign <- src[0]
exponent <- src[1:8]
fraction <- src[9:31]
class.Infinity <- (exponent = 0xFF) & (fraction = 0)
class.NaN <- (exponent = 0xFF) & (fraction != 0)
class.Zero <- (exponent = 0x00) & (fraction = 0)
class.Denormal <- (exponent = 0x00) & (fraction != 0)
CR{BF} <- ((dcmx[0] & class.NaN & !sign) |

(dcmx[1] & class.NaN & sign)) ||
((dcmx[2] & class.Infinity & !sign) |
(dcmx[3] & class.Infinity & sign)) ||
((dcmx[6] & class.Denormal & !sign) |
(dcmx[7] & class.Denormal & sign)) ||
((dcmx[4] & class.Zero & !sign) |
(dcmx[5] & class.Zero & sign))

64 bit variant fptstdp is as follows:

src <- (FRB)

303

CHAPTER 5. FP CLASS OPS 304

sign <- src[0]
exponent <- src[1:11]
fraction <- src[12:63]

exponent & 7FF

In SV just as with [[sv/fcvt]] single precision is to be considered half-of-elwidth precision. Thus when elwidth=FP32
fptstsp will test half that precision, at FP16.

Chapter 6

Audio and Video Opcodes

[[!tag standards]]

6.1 Scalar OpenPOWER Audio and Video Opcodes

the fundamental principle of SV is a hardware for-loop. therefore the first (and in nearly 100% of cases only)
place to put Vector operations is first and foremost in the scalar ISA. However only by analysing those scalar
opcodes in a SV Vectorisation context does it become clear why they are needed and how they may be designed.

This page therefore has accompanying discussion at https://bugs.libre-soc.org/show_bug.cgi?id=230 for
evolution of suitable opcodes.

Links

• https://bugs.libre-soc.org/show_bug.cgi?id=915 add overflow to maxmin.
• https://bugs.libre-soc.org/show_bug.cgi?id=863 add pseudocode etc.
• https://bugs.libre-soc.org/show_bug.cgi?id=234 hardware implementation
• https://bugs.libre-soc.org/show_bug.cgi?id=910 mins/maxs zero-option?
• https://bugs.libre-soc.org/show_bug.cgi?id=1057 move all int/fp min/max to ls013
• [[vpu]]
• {FP/Int Conversion ops}
• [[openpower/isa/av]] pseudocode
• [[av_opcodes/analysis]]
• TODO review HP 1994-6 PA-RISC MAX https://en.m.wikipedia.org/wiki/Multimedia_

Acceleration_eXtensions
• https://en.m.wikipedia.org/wiki/Sum_of_absolute_differences
• List of MMX instructions https://cs.fit.edu/~mmahoney/cse3101/mmx.html

6.2 Summary

In-advance, the summary of base scalar operations that need to be added is:

instruction pseudocode
average-add. result = (src1 + src2 + 1) >> 1
abs-diff result = abs (src1-src2)
abs-accumulate result += abs (src1-src2)
(un)signed min result = (src1 < src2) ? src1 : src2 {RFC ls013}
(un)signed max result = (src1 > src2) ? src1 : src2 {RFC ls013}

305

https://bugs.libre-soc.org/show_bug.cgi?id=230
https://bugs.libre-soc.org/show_bug.cgi?id=915
https://bugs.libre-soc.org/show_bug.cgi?id=863
https://bugs.libre-soc.org/show_bug.cgi?id=234
https://bugs.libre-soc.org/show_bug.cgi?id=910
https://bugs.libre-soc.org/show_bug.cgi?id=1057
https://en.m.wikipedia.org/wiki/Multimedia_Acceleration_eXtensions
https://en.m.wikipedia.org/wiki/Multimedia_Acceleration_eXtensions
https://en.m.wikipedia.org/wiki/Sum_of_absolute_differences
https://cs.fit.edu/~mmahoney/cse3101/mmx.html

CHAPTER 6. AUDIO AND VIDEO OPCODES 306

instruction pseudocode
bitwise sel (a ? b : c) - use {Bitmanip ops} ternary
int/fp move covered by REMAP and Pack/Unpack

Implemented at the [[openpower/isa/av]] pseudocode page.

All other capabilities (saturate in particular) are achieved with {SVP64 Chapter} modes and swizzle. Note that
minmax and ternary are added in bitmanip.

6.3 Instructions

6.3.1 Average Add

X-Form

• avgadd RT,RA,RB (Rc=0)
• avgadd. RT,RA,RB (Rc=1)

Pseudo-code:

a <- [0] * (XLEN+1)
b <- [0] * (XLEN+1)
a[1:XLEN] <- (RA)
b[1:XLEN] <- (RB)
r <- (a + b + 1)
RT <- r[0:XLEN-1]

Special Registers Altered:

CR0 (if Rc=1)

6.3.2 Absolute Signed Difference

X-Form

• absds RT,RA,RB (Rc=0)
• absds. RT,RA,RB (Rc=1)

Pseudo-code:

if (RA) < (RB) then RT <- ¬(RA) + (RB) + 1
else RT <- ¬(RB) + (RA) + 1

Special Registers Altered:

CR0 (if Rc=1)

6.3.3 Absolute Unsigned Difference

X-Form

• absdu RT,RA,RB (Rc=0)
• absdu. RT,RA,RB (Rc=1)

Pseudo-code:

CHAPTER 6. AUDIO AND VIDEO OPCODES 307

if (RA) <u (RB) then RT <- ¬(RA) + (RB) + 1
else RT <- ¬(RB) + (RA) + 1

Special Registers Altered:

CR0 (if Rc=1)

6.3.4 Absolute Accumulate Unsigned Difference

X-Form

• absdacu RT,RA,RB (Rc=0)
• absdacu. RT,RA,RB (Rc=1)

Pseudo-code:

if (RA) <u (RB) then r <- ¬(RA) + (RB) + 1
else r <- ¬(RB) + (RA) + 1
RT <- (RT) + r

Special Registers Altered:

CR0 (if Rc=1)

6.3.5 Absolute Accumulate Signed Difference

X-Form

• absdacs RT,RA,RB (Rc=0)
• absdacs. RT,RA,RB (Rc=1)

Pseudo-code:

if (RA) < (RB) then r <- ¬(RA) + (RB) + 1
else r <- ¬(RB) + (RA) + 1
RT <- (RT) + r

Special Registers Altered:

CR0 (if Rc=1)

Chapter 7

Big Integer

[[!tag standards]]

7.1 Big Integer Arithmetic

DRAFT STATUS 19apr2022, last edited 23may2022

• [[discussion]] page for notes
• https://bugs.libre-soc.org/show_bug.cgi?id=817 bugreport
• https://bugs.libre-soc.org/show_bug.cgi?id=937 128/64 shifts
• [[biginteger/analysis]]
• [[openpower/isa/svfixedarith]] pseudocode

BigNum arithmetic is extremely common especially in cryptography, where for example RSA relies on arithmetic
of 2048 or 4096 bits in length. The primary operations are add, multiply and divide (and modulo) with
specialisations of subtract and signed multiply.

A reminder that a particular focus of SVP64 is that it is built on top of Scalar operations, where those scalar
operations are useful in their own right without SVP64. Thus the operations here are proposed first as Scalar
Extensions to the Power ISA.

A secondary focus is that if Vectorised, implementors may choose to deploy macro-op fusion targetting back-end
256-bit or greater Dynamic SIMD ALUs for maximum performance and effectiveness.

7.2 Analysis

Covered in [[biginteger/analysis]] the summary is that standard adde is sufficient for SVP64 Vectorisation of
big-integer addition (and subfe for subtraction) but that big-integer shift, multiply and divide require an extra
3-in 2-out instructions, similar to Intel’s shld and shrd, mulx and divq, to be efficient. The same instruction
(maddedu) is used in both big-divide and big-multiply because ‘maddedu”s primary purpose is to perform a fused
64-bit scalar multiply with a large vector, where that result is Big-Added for Big-Multiply, but Big-Subtracted
for Big-Divide.

Chaining the operations together gives Scalar-by-Vector operations, except for sv.adde and sv.subfe which
are Vector-by-Vector Chainable (through the CA flag). Macro-op Fusion and back-end massively-wide SIMD
ALUs may be deployed in a fashion that is hidden from the user, behind a consistent, stable ISA API. The same
macro-op fusion may theoretically be deployed even on Scalar operations.

308

https://bugs.libre-soc.org/show_bug.cgi?id=817
https://bugs.libre-soc.org/show_bug.cgi?id=937
https://www.felixcloutier.com/x86/shld
https://www.felixcloutier.com/x86/shrd
https://www.felixcloutier.com/x86/mulx
https://www.felixcloutier.com/x86/div

CHAPTER 7. BIG INTEGER 309

7.3 DRAFT dsld

0.5 6..10 11..15 16..20 21.25 26..30 31
EXT04 RT RA RB RC XO Rc

VA2-Form

• dsld RT,RA,RB,RC (Rc=0)
• dsld. RT,RA,RB,RC (Rc=1)

Pseudo-code:

n <- (RB)[58:63]
v <- ROTL64((RA), n)
mask <- MASK(0, 63-n)
RT <- (v[0:63] & mask) | ((RC) & ¬mask)
RS <- v[0:63] & ¬mask
overflow = 0
if RS != [0]*64:

overflow = 1

Special Registers Altered:

CR0 (if Rc=1)

7.4 DRAFT dsrd

0.5 6..10 11..15 16..20 21.25 26..30 31
EXT04 RT RA RB RC XO Rc

VA2-Form

• dsrd RT,RA,RB,RC (Rc=0)
• dsrd. RT,RA,RB,RC (Rc=1)

Pseudo-code:

n <- (RB)[58:63]
v <- ROTL64((RA), 64-n)
mask <- MASK(n, 63)
RT <- (v[0:63] & mask) | ((RC) & ¬mask)
RS <- v[0:63] & ¬mask
overflow = 0
if RS != [0]*64:

overflow = 1

Special Registers Altered:

CR0 (if Rc=1)

7.5 maddedu

DRAFT

CHAPTER 7. BIG INTEGER 310

maddedu is similar to v3.0 madd, and is VA-Form despite having 2 outputs: the second destination register is
implicit.

0.5 6..10 11..15 16..20 21..25 26..31
EXT04 RT RA RB RC XO

The pseudocode for maddedu RT, RA, RB, RC is:

prod[0:127] = (RA) * (RB)
sum[0:127] = EXTZ(RC) + prod
RT <- sum[64:127]
RS <- sum[0:63] # RS implicit register, see below

RC is zero-extended (not shifted, not sign-extended), the 128-bit product added to it; the lower half of that
result stored in RT and the upper half in RS.

The differences here to maddhdu are that maddhdu stores the upper half in RT, where maddedu stores the upper
half in RS.

The value stored in RT is exactly equivalent to maddld despite maddld performing sign-extension on RC, because
RT is the full mathematical result modulo 2ˆ64 and sign/zero extension from 64 to 128 bits produces identical
results modulo 2ˆ64. This is why there is no maddldu instruction.

Programmer’s Note: As a Scalar Power ISA operation, like lq and stq, RS=RT+1. To achieve the same
big-integer rolling-accumulation effect as SVP64: assuming the scalar to multiply is in r0, the vector to multiply
by starts at r4 and the result vector in r20, instructions may be issued maddedu r20,r4,r0,r20 maddedu
r21,r5,r0,r21 etc. where the first maddedu will have stored the upper half of the 128-bit multiply into r21, such
that it may be picked up by the second maddedu. Repeat inline to construct a larger bigint scalar-vector multiply,
as Scalar GPR register file space permits.

SVP64 overrides the Scalar behaviour of what defines RS. For SVP64 EXTRA register extension, the RM-1P-3S-1D
format is used with the additional bit set for determining RS.

Field Name Field bits Description
Rdest_EXTRA2 10:11 extends RT (R*_EXTRA2 Encoding)
Rsrc1_EXTRA2 12:13 extends RA (R*_EXTRA2 Encoding)
Rsrc2_EXTRA2 14:15 extends RB (R*_EXTRA2 Encoding)
Rsrc3_EXTRA2 16:17 extends RC (R*_EXTRA2 Encoding)
EXTRA2_MODE 18 used by maddedu for determining RS

When EXTRA2_MODE is set to zero, the implicit RS register takes its Vector/Scalar setting from Rdest_EXTRA2,
and takes the register number from RT, but all numbering is offset by MAXVL. Note that element-width overrides
influence this offset (see SVP64 {SVP64 Appendix} for full details).

When EXTRA2_MODE is set to one, the implicit RS register is identical to RC extended with SVP64 using
Rsrc3_EXTRA2 in every respect, including whether RC is set Scalar or Vector.

7.6 divmod2du RT,RA,RB,RC

DRAFT

Divide/Modulu Quad-Double Unsigned is another VA-Form instruction that is near-identical to divdeu except
that:

• the lower 64 bits of the dividend, instead of being zero, contain a register, RC.

CHAPTER 7. BIG INTEGER 311

• it performs a fused divide and modulo in a single instruction, storing the modulo in an implicit RS (similar
to maddedu)

RB, the divisor, remains 64 bit. The instruction is therefore a 128/64 division, producing a (pair) of 64 bit
result(s), in the same way that Intel divq works. Overflow conditions are detected in exactly the same fashion
as divdeu, except that rather than have UNDEFINED behaviour, RT is set to all ones and RS set to all zeros on
overflow.

Programmer’s note: there are no Rc variants of any of these VA-Form instructions. cmpi will need to be used to
detect overflow conditions: the saving in instruction count is that both RT and RS will have already been set to
useful values (all 1s and all zeros respectively) needed as part of implementing Knuth’s Algorithm D

For SVP64, given that this instruction is also 3-in 2-out 64-bit registers, the exact same EXTRA format and
setting of RS is used as for sv.maddedu. For Scalar usage, just as for maddedu, RS=RT+1 (similar to lq and stq).

Pseudo-code:

if ((RA) <u (RB)) & ((RB) != [0]*XLEN) then
dividend[0:(XLEN*2)-1] <- (RA) || (RC)
divisor[0:(XLEN*2)-1] <- [0]*XLEN || (RB)
result <- dividend / divisor
modulo <- dividend % divisor
RT <- result[XLEN:(XLEN*2)-1]
RS <- modulo[XLEN:(XLEN*2)-1]

else
RT <- [1]*XLEN
RS <- [0]*XLEN

7.7 [DRAFT] EXT04 Proposed Map

For the Opcode map (XO Field) see Power ISA v3.1, Book III, Appendix D, Table 13 (sheet 7 of 8), p1357.
Proposed is the addition of:

• maddedu in 110010
• divmod2du in 111010
• pcdec in 111000

v > 000 001 010 011 100 101 110 111
110 maddhd maddhdu maddedu maddld rsvd rsvd rsvd rsvd
111 pcdec. rsvd divmod2du vpermr vaddequm vaddecuq vsubeuqm vsubecuq

https://www.felixcloutier.com/x86/div

Chapter 8

Transcendentals

8.1 DRAFT Scalar Transcendentals

Summary:

This proposal extends Power ISA scalar floating point operations to add IEEE754 transcendental functions (pow,
log etc) and trigonometric functions (sin, cos etc). These functions are also 98% shared with the Khronos Group
OpenCL Extended Instruction Set.

Authors/Contributors:

• Luke Kenneth Casson Leighton
• Jacob Lifshay
• Dan Petroski
• Mitch Alsup
• Allen Baum
• Andrew Waterman
• Luis Vitorio Cargnini

[[!toc levels=2]]

See:

• http://bugs.libre-soc.org/show_bug.cgi?id=127
• https://bugs.libre-soc.org/show_bug.cgi?id=899 transcendentals in simulator
• https://bugs.libre-soc.org/show_bug.cgi?id=923 under review
• https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.

100.html
• [[power_trans_ops]] for opcode listing.

Extension subsets:

TODO: rename extension subsets – we’re not on RISC-V anymore.

• Zftrans: standard transcendentals (best suited to 3D)
• ZftransExt: extra functions (useful, not generally needed for 3D, can be synthesised using Ztrans)
• Ztrigpi: trig. xxx-pi sinpi cospi tanpi
• Ztrignpi: trig non-xxx-pi sin cos tan
• Zarctrigpi: arc-trig. a-xxx-pi: atan2pi asinpi acospi
• Zarctrignpi: arc-trig. non-a-xxx-pi: atan2, asin, acos
• Zfhyp: hyperbolic/inverse-hyperbolic. sinh, cosh, tanh, asinh, acosh, atanh (can be synthesised - see

below)
• ZftransAdv: much more complex to implement in hardware

312

http://bugs.libre-soc.org/show_bug.cgi?id=127
https://bugs.libre-soc.org/show_bug.cgi?id=899
https://bugs.libre-soc.org/show_bug.cgi?id=923
https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html
https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html

CHAPTER 8. TRANSCENDENTALS 313

• Zfrsqrt: Reciprocal square-root.
• Zfminmax: Min/Max.

Minimum recommended requirements for 3D: Zftrans, Ztrignpi, Zarctrignpi, with Ztrigpi and Zarctrigpi as
augmentations.

Minimum recommended requirements for Mobile-Embedded 3D: Ztrignpi, Zftrans, with Ztrigpi as an augmenta-
tion.

The Platform Requirements for 3D are driven by cost competitive factors and it is the Trademarked Vulkan
Specification that provides clear direction for 3D GPU markets, but nothing else (IEEE754). Implementors must
note that minimum Compliance with the Third Party Vulkan Specification (for power-area competitive reasons
with other 3D GPU manufacturers) will not qualify for strict IEEE754 accuracy Compliance or vice-versa.

Implementors must make it clear which accuracy level is implemented and provide a switching mechanism
and throw Illegal Instruction traps if fully compliant accuracy cannot be achieved. It is also the Implementor’s
responsibility to comply with all Third Party Certification Marks and Trademarks (Vulkan, OpenCL). Nothing
in this specification in any way implies that any Third Party Certification Mark Compliance is granted, nullified,
altered or overridden by this document.

8.2 TODO:

• Decision on accuracy, moved to [[zfpacc_proposal]] http://lists.libre-riscv.org/pipermail/
libre-riscv-dev/2019-August/002355.html

• Errors MUST be repeatable.
• How about four Platform Specifications? 3DUNIX, UNIX, 3DEmbedded and Embedded? http://lists.

libre-riscv.org/pipermail/libre-riscv-dev/2019-August/002361.html Accuracy requirements for
dual (triple) purpose implementations must meet the higher standard.

• Reciprocal Square-root is in its own separate extension (Zfrsqrt) as it is desirable on its own by other
implementors. This to be evaluated.

8.3 Requirements

This proposal is designed to meet a wide range of extremely diverse needs, allowing implementors from all of
them to benefit from the tools and hardware cost reductions associated with common standards adoption in
Power ISA (primarily IEEE754 and Vulkan).

The use-cases are:

• 3D GPUs
• Numerical Computation
• (Potentially) A.I. / Machine-learning (1)

(1) although approximations suffice in this field, making it more likely to use a custom extension. High-end
ML would inherently definitely be excluded.

The power and die-area requirements vary from:

• Ultra-low-power (smartwatches where GPU power budgets are in milliwatts)
• Mobile-Embedded (good performance with high efficiency for battery life)
• Desktop Computing
• Server / HPC / Supercomputing

The software requirements are:

• Full public integration into GNU math libraries (libm)
• Full public integration into well-known Numerical Computation systems (numpy)

http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-August/002355.html
http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-August/002355.html
http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-August/002361.html
http://lists.libre-riscv.org/pipermail/libre-riscv-dev/2019-August/002361.html

CHAPTER 8. TRANSCENDENTALS 314

• Full public integration into upstream GNU and LLVM Compiler toolchains
• Full public integration into Khronos OpenCL SPIR-V compatible Compilers seeking public Certification

and Endorsement from the Khronos Group under their Trademarked Certification Programme.

8.4 Proposed Opcodes vs Khronos OpenCL vs IEEE754-2019

This list shows the (direct) equivalence between proposed opcodes, their Khronos OpenCL equivalents, and
their IEEE754-2019 equivalents. 98% of the opcodes in this proposal that are in the IEEE754-2019 standard are
present in the Khronos Extended Instruction Set.

See https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.
html and https://ieeexplore.ieee.org/document/8766229

• Special FP16 opcodes are not being proposed, except by indirect / inherent use of elwidth overrides that is
already present in the SVP64 Specification.

• “Native” opcodes are not being proposed: implementors will be expected to use the (equivalent) proposed
opcode covering the same function.

• “Fast” opcodes are not being proposed, because the Khronos Specification fast_length, fast_normalise
and fast_distance OpenCL opcodes require vectors (or can be done as scalar operations using other Power
ISA instructions).

The OpenCL FP32 opcodes are direct equivalents to the proposed opcodes. Deviation from conformance with
the Khronos Specification - including the Khronos Specification accuracy requirements - is not an option, as it
results in non-compliance, and the vendor may not use the Trademarked words “Vulkan” etc. in conjunction
with their product.

IEEE754-2019 Table 9.1 lists “additional mathematical operations”. Interestingly the only functions missing
when compared to OpenCL are compound, exp2m1, exp10m1, log2p1, log10p1, pown (integer power) and powr.

opcode OpenCL FP32 OpenCL FP16 OpenCL native IEEE754 Power ISA My 66000 ISA
fsin sin half_sin native_sin sin NONE sin
fcos cos half_cos native_cos cos NONE cos
ftan tan half_tan native_tan tan NONE tan
NONE (1) sincos NONE NONE NONE NONE
fasin asin NONE NONE asin NONE asin
facos acos NONE NONE acos NONE acos
fatan atan NONE NONE atan NONE atan
fsinpi sinpi NONE NONE sinPi NONE sinpi
fcospi cospi NONE NONE cosPi NONE cospi
ftanpi tanpi NONE NONE tanPi NONE tanpi
fasinpi asinpi NONE NONE asinPi NONE asinpi
facospi acospi NONE NONE acosPi NONE acospi
fatanpi atanpi NONE NONE atanPi NONE atanpi
fsinh sinh NONE NONE sinh NONE
fcosh cosh NONE NONE cosh NONE
ftanh tanh NONE NONE tanh NONE
fasinh asinh NONE NONE asinh NONE
facosh acosh NONE NONE acosh NONE
fatanh atanh NONE NONE atanh NONE
fatan2 atan2 NONE NONE atan2 NONE atan2
fatan2pi atan2pi NONE NONE atan2pi NONE atan2pi
frsqrt rsqrt half_rsqrt native_rsqrt rSqrt fsqrte, fsqrtes (4) rsqrt
fcbrt cbrt NONE NONE NONE (2) NONE
fexp2 exp2 half_exp2 native_exp2 exp2 NONE exp2
flog2 log2 half_log2 native_log2 log2 NONE ln2

https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html
https://www.khronos.org/registry/spir-v/specs/unified1/OpenCL.ExtendedInstructionSet.100.html
https://ieeexplore.ieee.org/document/8766229

CHAPTER 8. TRANSCENDENTALS 315

opcode OpenCL FP32 OpenCL FP16 OpenCL native IEEE754 Power ISA My 66000 ISA
fexpm1 expm1 NONE NONE expm1 NONE expm1
flog1p log1p NONE NONE logp1 NONE logp1
fexp exp half_exp native_exp exp NONE exp
flog log half_log native_log log NONE ln
fexp10 exp10 half_exp10 native_exp10 exp10 NONE exp10
flog10 log10 half_log10 native_log10 log10 NONE log
fpow pow NONE NONE pow NONE pow
fpown pown NONE NONE pown NONE
fpowr powr half_powr native_powr powr NONE
frootn rootn NONE NONE rootn NONE
fhypot hypot NONE NONE hypot NONE
frecip NONE half_recip native_recip NONE (3) fre, fres (4) rcp
NONE NONE NONE NONE compound NONE
fexp2m1 NONE NONE NONE exp2m1 NONE exp2m1
fexp10m1 NONE NONE NONE exp10m1 NONE exp10m1
flog2p1 NONE NONE NONE log2p1 NONE ln2p1
flog10p1 NONE NONE NONE log10p1 NONE logp1
fminnum08 fmin fmin NONE minNum xsmindp (5)
fmaxnum08 fmax fmax NONE maxNum xsmaxdp (5)
fmin19 fmin fmin NONE minimum NONE fmin
fmax19 fmax fmax NONE maximum NONE fmax
fminnum19 fmin fmin NONE minimumNumber vminfp (6), xsminjdp (5)
fmaxnum19 fmax fmax NONE maximumNumber vmaxfp (6), xsmaxjdp (5)
fminc fmin fmin NONE NONE xsmincdp (5) fmin*
fmaxc fmax fmax NONE NONE xsmaxcdp (5) fmax*
fminmagnum08 minmag minmag NONE minNumMag NONE
fmaxmagnum08 maxmag maxmag NONE maxNumMag NONE
fminmag19 minmag minmag NONE minimumMagnitude NONE
fmaxmag19 maxmag maxmag NONE maximumMagnitude NONE
fminmagnum19 minmag minmag NONE minimumMagnitudeNumber NONE
fmaxmagnum19 maxmag maxmag NONE maximumMagnitudeNumber NONE
fminmagc minmag minmag NONE NONE NONE
fmaxmagc maxmag maxmag NONE NONE NONE
fmod fmod fmod NONE NONE
fremainder remainder remainder remainder NONE

from Mitch Alsup:

• Brian’s LLVM compiler converts fminc and fmaxc into fmin and fmax instructions These are all IEEE
754-2019 compliant These are native instructions not extensions All listed functions are available in both
F32 and F64 formats. THere is some confusion (in my head) abouot fmin and fmax. I intend both
instruction to perform 754-2019 semantics– but I don know if this is minimum/maximum or minimum-
Number/maximumNumber. fmad and remainder are a 2-instruction sequence–don’t know how to “edit it
in”

Note (1) fsincos is macro-op fused (see below).

Note (2) synthesised in IEEE754-2019 as “rootn(x, 3)”

Note (3) synthesised in IEEE754-2019 using “1.0 / x”

Note (4) these are estimate opcodes that help accelerate software emulation

Note (5) f64-only (though can be used on f32 stored in f64 format), requires VSX.

Note (6) 4xf32-only, requires VMX.

CHAPTER 8. TRANSCENDENTALS 316

8.4.1 List of 2-arg opcodes

opcode Description pseudocode Extension
fatan2 atan2 arc tangent FRT = atan2(FRB,

FRA)
Zarctrignpi

fatan2pi atan2 arc tangent / pi FRT = atan2(FRB,
FRA) / pi

Zarctrigpi

fpow x power of y FRT = pow(FRA,
FRB)

ZftransAdv

fpown x power of n (n int) FRT = pow(FRA, RB) ZftransAdv
fpowr x power of y (x +ve) FRT = exp(FRA

log(FRB))
ZftransAdv

frootn x power 1/n (n integer) FRT = pow(FRA,
1/RB)

ZftransAdv

fhypot hypotenuse FRT = sqrt(FRAˆ2 +
FRBˆ2)

ZftransAdv

fminnum08 IEEE 754-2008
minNum

FRT = minNum(FRA,
FRB) (1)

Zfminmax

fmaxnum08 IEEE 754-2008
maxNum

FRT = maxNum(FRA,
FRB) (1)

Zfminmax

fmin19 IEEE 754-2019
minimum

FRT = minimum(FRA,
FRB)

Zfminmax

fmax19 IEEE 754-2019
maximum

FRT =
maximum(FRA, FRB)

Zfminmax

fminnum19 IEEE 754-2019
minimumNumber

FRT = minimumNum-
ber(FRA,
FRB)

Zfminmax

fmaxnum19 IEEE 754-2019
maximumNumber

FRT = maximumNum-
ber(FRA,
FRB)

Zfminmax

fminc C ternary-op minimum FRT = FRA < FRB ?
FRA : FRB

Zfminmax

fmaxc C ternary-op maximum FRT = FRA > FRB ?
FRA : FRB

Zfminmax

fminmagnum08IEEE 754-2008
minNumMag

FRT =
minmaxmag(FRA,
FRB, False,
fminnum08) (2)

Zfminmax

fmaxmagnum08IEEE 754-2008
maxNumMag

FRT =
minmaxmag(FRA,
FRB, True,
fmaxnum08) (2)

Zfminmax

fminmag19 IEEE 754-2019
minimumMagnitude

FRT =
minmaxmag(FRA,
FRB, False, fmin19)
(2)

Zfminmax

fmaxmag19 IEEE 754-2019
maximumMagnitude

FRT =
minmaxmag(FRA,
FRB, True, fmax19)
(2)

Zfminmax

fminmagnum19IEEE 754-2019
minimumMagnitudeNumber

FRT =
minmaxmag(FRA,
FRB, False,
fminnum19) (2)

Zfminmax

CHAPTER 8. TRANSCENDENTALS 317

opcode Description pseudocode Extension
fmaxmagnum19IEEE 754-2019

maximumMagnitudeNumber
FRT =
minmaxmag(FRA,
FRB, True,
fmaxnum19) (2)

Zfminmax

fminmagc C ternary-op minimum
magnitude

FRT =
minmaxmag(FRA,
FRB, False, fminc) (2)

Zfminmax

fmaxmagc C ternary-op maximum
magnitude

FRT =
minmaxmag(FRA,
FRB, True, fmaxc) (2)

Zfminmax

fmod modulus FRT = fmod(FRA,
FRB)

ZftransExt

fremainder IEEE 754 remainder FRT =
remainder(FRA, FRB)

ZftransExt

Note (1): for the purposes of minNum/maxNum, -0.0 is defined to be less than +0.0. This is left unspecified in
IEEE 754-2008.

Note (2): minmaxmag(x, y, cmp, fallback) is defined as:

def minmaxmag(x, y, is_max, fallback):
a = abs(x) < abs(y)
b = abs(x) > abs(y)
if is_max:

a, b = b, a # swap
if a:

return x
if b:

return y
equal magnitudes, or NaN input(s)
return fallback(x, y)

8.4.2 List of 1-arg transcendental opcodes

opcode Description pseudocode Extension
frsqrt Reciprocal Square-root FRT = sqrt(FRA) Zfrsqrt
fcbrt Cube Root FRT = pow(FRA, 1.0 / 3) ZftransAdv
frecip Reciprocal FRT = 1.0 / FRA Zftrans
fexp2m1 power-2 minus 1 FRT = pow(2, FRA) - 1.0 ZftransExt
flog2p1 log2 plus 1 FRT = log(2, 1 + FRA) ZftransExt
fexp2 power-of-2 FRT = pow(2, FRA) Zftrans
flog2 log2 FRT = log(2. FRA) Zftrans
fexpm1 exponential minus 1 FRT = pow(e, FRA) - 1.0 ZftransExt
flog1p log plus 1 FRT = log(e, 1 + FRA) ZftransExt
fexp exponential FRT = pow(e, FRA) ZftransExt
flog natural log (base e) FRT = log(e, FRA) ZftransExt
fexp10m1 power-10 minus 1 FRT = pow(10, FRA) - 1.0 ZftransExt
flog10p1 log10 plus 1 FRT = log(10, 1 + FRA) ZftransExt
fexp10 power-of-10 FRT = pow(10, FRA) ZftransExt
flog10 log base 10 FRT = log(10, FRA) ZftransExt

CHAPTER 8. TRANSCENDENTALS 318

8.4.3 List of 1-arg trigonometric opcodes

opcode Description pseudocode Extension
fsin sin (radians) FRT = sin(FRA) Ztrignpi
fcos cos (radians) FRT = cos(FRA) Ztrignpi
ftan tan (radians) FRT = tan(FRA) Ztrignpi
fasin arcsin (radians) FRT = asin(FRA) Zarctrignpi
facos arccos (radians) FRT = acos(FRA) Zarctrignpi
fatan arctan (radians) FRT = atan(FRA) Zarctrignpi
fsinpi sin times pi FRT = sin(pi * FRA) Ztrigpi
fcospi cos times pi FRT = cos(pi * FRA) Ztrigpi
ftanpi tan times pi FRT = tan(pi * FRA) Ztrigpi
fasinpi arcsin / pi FRT = asin(FRA) / pi Zarctrigpi
facospi arccos / pi FRT = acos(FRA) / pi Zarctrigpi
fatanpi arctan / pi FRT = atan(FRA) / pi Zarctrigpi
fsinh hyperbolic sin (radians) FRT = sinh(FRA) Zfhyp
fcosh hyperbolic cos (radians) FRT = cosh(FRA) Zfhyp
ftanh hyperbolic tan (radians) FRT = tanh(FRA) Zfhyp
fasinh inverse hyperbolic sin FRT = asinh(FRA) Zfhyp
facosh inverse hyperbolic cos FRT = acosh(FRA) Zfhyp
fatanh inverse hyperbolic tan FRT = atanh(FRA) Zfhyp

8.5 Opcode Tables for PO=59/63 XO=1—011–

Power ISA v3.1B opcodes extracted from:

• Power ISA v3.1B Appendix D Table 23 sheet 2/3 of 4 page 1391/1392
• Power ISA v3.1B Appendix D Table 25 sheet 2/3 of 4 page 1399/1400

Parenthesized entries are not part of fptrans.

• Entries whose mnemonic ends in s are only in PO=59.
• Entries whose mnemonic does not end in s are only in PO=63.
• Entries whose mnemonic ends in (s) are in both PO=59 and PO=63.

XO LSB half →
XO MSB half ↓ 01100 01101 01110 01111
10000 10000 01100

fcbrt(s) (draft)
10000 01101
fsinpi(s) (draft)

10000 01110
fatan2pi(s) (draft)

10000 01111
fasinpi(s) (draft)

10001 10001 01100
fcospi(s) (draft)

10001 01101
ftanpi(s) (draft)

10001 01110
facospi(s) (draft)

10001 01111
fatanpi(s) (draft)

10010 10010 01100
frsqrt(s) (draft)

10010 01101
fsin(s) (draft)

10010 01110
fatan2(s) (draft)

10010 01111
fasin(s) (draft)

10011 10011 01100
fcos(s) (draft)

10011 01101
ftan(s) (draft)

10011 01110
facos(s) (draft)

10011 01111
fatan(s) (draft)

10100 10100 01100
frecip(s) (draft)

10100 01101
fsinh(s) (draft)

10100 01110
fhypot(s) (draft)

10100 01111
fasinh(s) (draft)

10101 10101 01100
fcosh(s) (draft)

10101 01101
ftanh(s) (draft)

10101 01110
facosh(s) (draft)

10101 01111
fatanh(s) (draft)

10110 10110 01100 10110 01101 10110 01110 10110 01111

10111 10111 01100 10111 01101 10111 01110 10111 01111

CHAPTER 8. TRANSCENDENTALS 319

XO LSB half →
XO MSB half ↓ 01100 01101 01110 01111
11000 11000 01100

fexp2m1(s) (draft)
11000 01101
flog2p1(s) (draft)

11000 01110
(fcvttgo(s)) (draft)

11000 01111
(fcvtfg(s)) (draft)

11001 11001 01100
fexpm1(s) (draft)

11001 01101
flogp1(s) (draft)

11001 01110
(fctid)

11001 01111
(fctidz)

11010 11010 01100
fexp10m1(s)
(draft)

11010 01101
flog10p1(s) (draft)

11010 01110
(fcfid(s))

11010 01111
fmod(s) (draft)

11011 11011 01100
fpown(s) (draft)

11011 01101
frootn(s) (draft)

11011 01110 11011 01111

11100 11100 01100
fexp2(s) (draft)

11100 01101
flog2(s) (draft)

11100 01110
(fmvtg(s)) (draft)

11100 01111
(fmvfg(s)) (draft)

11101 11101 01100
fexp(s) (draft)

11101 01101
flog(s) (draft)

11101 01110
(fctidu)

11101 01111
(fctiduz)

11110 11110 01100
fexp10(s) (draft)

11110 01101
flog10(s) (draft)

11110 01110
(fcfidu(s))

11110 01111
fremainder(s)
(draft)

11111 11111 01100
fpowr(s) (draft)

11111 01101
fpow(s) (draft)

11111 01110 11111 01111

XO LSB half →
XO MSB half ↓ 10000 10001 10010 10011
////00 10000

fminmax(s) (draft)
////0 10001 ////0 10010

(fdiv(s))
////0 10011

////1 ////1 10000 ////1 10001 ////1 10010
(fdiv(s))

////1 10011

8.6 DRAFT List of 2-arg opcodes

These are X-Form, recommended Major Opcode 63 for full-width and 59 for half-width (ending in s).

0.5 6.10 11.15 16.20 21..30 31 name Form
NN FRT FRA FRB 1xxxx011xx Rc transcendental X-Form
NN FRT FRA RB 1xxxx011xx Rc transcendental X-Form
NN FRT FRA FRB xxxxx10000 Rc transcendental X-Form

Recommended 10-bit XO assignments:

opcode Description Major 59 and 63 bits 16..20
fatan2(s) atan2 arc tangent 10010 01110 FRB
fatan2pi(s) atan2 arc tangent / π 10000 01110 FRB
fpow(s) xy 11111 01101 FRB
fpown(s) xn (n ∈ Z) 11011 01100 RB
fpowr(s) xy (x >= 0) 11111 01100 FRB
frootn(s) n√x (n ∈ Z) 11011 01101 RB
fhypot(s) √(x2 + y2) 10100 01110 FRB
fminmax(s) min/max0 10000 FRB
fmod(s) modulus 11010 01111 FRB

CHAPTER 8. TRANSCENDENTALS 320

opcode Description Major 59 and 63 bits 16..20
fremainder(s) IEEE 754 remainder 11110 01111 FRB

8.7 DRAFT List of 1-arg transcendental opcodes

These are X-Form, and are mostly identical in Special Registers Altered to fsqrt (the exact fp exceptions they
can produce differ). Recommended Major Opcode 63 for full-width and 59 for half-width (ending in s).

Special Registers Altered (FIXME: come up with correct list):

FPRF FR FI FX OX UX XX
VXSNAN VXIMZ VXZDZ
CR1 (if Rc=1)

0.5 6.10 11.15 16.20 21..30 31 name Form
NN FRT /// FRB 1xxxx011xx Rc transcendental X-Form

Recommended 10-bit XO assignments:

opcode Description Major 59 and 63
frsqrt(s) 1 / √x 10010 01100
fcbrt(s) 3

√x 10000 01100
frecip(s) 1 / x 10100 01100
fexp2m1(s) 2x - 1 11000 01100
flog2p1(s) log2 (x + 1) 11000 01101
fexp2(s) 2x 11100 01100
flog2(s) log2 x 11100 01101
fexpm1(s) ex - 1 11001 01100
flogp1(s) loge (x + 1) 11001 01101
fexp(s) ex 11101 01100
flog(s) loge x 11101 01101
fexp10m1(s) 10x - 1 11010 01100
flog10p1(s) log10 (x + 1) 11010 01101
fexp10(s) 10x 11110 01100
flog10(s) log10 x 11110 01101

8.8 DRAFT List of 1-arg trigonometric opcodes

These are X-Form, and are mostly identical in Special Registers Altered to fsqrt (the exact fp exceptions they
can produce differ). Recommended Major Opcode 63 for full-width and 59 for half-width (ending in s)

Special Registers Altered:

FPRF FR FI FX OX UX XX
VXSNAN VXIMZ VXZDZ
CR1 (if Rc=1)

0.5 6.10 11.15 16.20 21..30 31 name Form
NN FRT /// FRB 1xxxx011xx Rc trigonometric X-Form

CHAPTER 8. TRANSCENDENTALS 321

Recommended 10-bit XO assignments:

opcode Description Major 59 and 63
fsin(s) sin (radians) 10010 01101
fcos(s) cos (radians) 10011 01100
ftan(s) tan (radians) 10011 01101
fasin(s) arcsin (radians) 10010 01111
facos(s) arccos (radians) 10011 01110
fatan(s) arctan (radians) 10011 01111
fsinpi(s) sin(π * x) 10000 01101
fcospi(s) cos(π * x) 10001 01100
ftanpi(s) tan(π * x) 10001 01101
fasinpi(s) arcsin(x) / π 10000 01111
facospi(s) arccos(x) / π 10001 01110
fatanpi(s) arctan(x) / π 10001 01111
fsinh(s) hyperbolic sin 10100 01101
fcosh(s) hyperbolic cos 10101 01100
ftanh(s) hyperbolic tan 10101 01101
fasinh(s) inverse hyperbolic sin 10100 01111
facosh(s) inverse hyperbolic cos 10101 01110
fatanh(s) inverse hyperbolic tan 10101 01111

8.9 Subsets

The full set is based on the Khronos OpenCL opcodes. If implemented entirely it would be too much for both
Embedded and also 3D.

The subsets are organised by hardware complexity, need (3D, HPC), however due to synthesis producing
inaccurate results at the range limits, the less common subsets are still required for IEEE754 HPC.

MALI Midgard, an embedded / mobile 3D GPU, for example only has the following opcodes:

28 - fmin
2C - fmax
E8 - fatan_pt2
F0 - frcp (reciprocal)
F2 - frsqrt (inverse square root, 1/sqrt(x))
F3 - fsqrt (square root)
F4 - fexp2 (2^x)
F5 - flog2
F6 - fsin1pi
F7 - fcos1pi
F9 - fatan_pt1

These in FP32 and FP16 only: no FP64 hardware, at all.

Vivante Embedded/Mobile 3D (etnaviv https://github.com/laanwj/etna_viv/blob/master/rnndb/isa.
xml) only has the following:

fmin/fmax (implemented using SELECT)
sin, cos2pi
cos, sin2pi
log2, exp
sqrt and rsqrt
recip.

https://github.com/laanwj/etna_viv/blob/master/rnndb/isa.xml
https://github.com/laanwj/etna_viv/blob/master/rnndb/isa.xml

CHAPTER 8. TRANSCENDENTALS 322

It also has fast variants of some of these, as a CSR Mode.

AMD’s R600 GPU (R600_Instruction_Set_Architecture.pdf) and the RDNA ISA (RDNA_Shader_ISA_5August2019.pdf,
Table 22, Section 6.3) have:

MIN/MAX/MIN_DX10/MAX_DX10
COS2PI (appx)
EXP2
LOG (IEEE754)
RECIP
RSQRT
SQRT
SIN2PI (appx)

AMD RDNA has F16 and F32 variants of all the above, and also has F64 variants of SQRT, RSQRT, MIN,
MAX, and RECIP. It is interesting that even the modern high-end AMD GPU does not have TAN or ATAN,
where MALI Midgard does.

Also a general point, that customised optimised hardware targetting FP32 3D with less accuracy simply can
neither be used for IEEE754 nor for FP64 (except as a starting point for hardware or software driven Newton
Raphson or other iterative method).

Also in cost/area sensitive applications even the extra ROM lookup tables for certain algorithms may be too
costly.

These wildly differing and incompatible driving factors lead to the subset subdivisions, below.

8.9.1 Transcendental Subsets

8.9.1.1 Zftrans

LOG2 EXP2 RECIP RSQRT

Zftrans contains the minimum standard transcendentals best suited to 3D. They are also the minimum subset
for synthesising log10, exp10, exp1m, log1p, the hyperbolic trigonometric functions sinh and so on.

They are therefore considered “base” (essential) transcendentals.

8.9.1.2 ZftransExt

LOG, EXP, EXP10, LOG10, LOGP1, EXP1M, fmod, fremainder

These are extra transcendental functions that are useful, not generally needed for 3D, however for Numerical
Computation they may be useful.

Although they can be synthesised using Ztrans (LOG2 multiplied by a constant), there is both a performance
penalty as well as an accuracy penalty towards the limits, which for IEEE754 compliance is unacceptable. In
particular, LOG(1+FRA) in hardware may give much better accuracy at the lower end (very small FRA) than
LOG(FRA).

Their forced inclusion would be inappropriate as it would penalise embedded systems with tight power and area
budgets. However if they were completely excluded the HPC applications would be penalised on performance
and accuracy.

Therefore they are their own subset extension.

CHAPTER 8. TRANSCENDENTALS 323

8.9.1.3 Zfhyp

SINH, COSH, TANH, ASINH, ACOSH, ATANH

These are the hyperbolic/inverse-hyperbolic functions. Their use in 3D is limited.

They can all be synthesised using LOG, SQRT and so on, so depend on Zftrans. However, once again, at the
limits of the range, IEEE754 compliance becomes impossible, and thus a hardware implementation may be
required.

HPC and high-end GPUs are likely markets for these.

8.9.1.4 ZftransAdv

CBRT, POW, POWN, POWR, ROOTN

These are simply much more complex to implement in hardware, and typically will only be put into HPC
applications.

Note that pow is commonly used in Blinn-Phong shading (the shading model used by OpenGL 1.0 and commonly
used by shader authors that need basic 3D graphics with specular highlights), however it can be sufficiently
emulated using pow(b, n) = exp2(n*log2(b)).

• Zfrsqrt: Reciprocal square-root.

8.9.2 Trigonometric subsets

8.9.2.1 Ztrigpi vs Ztrignpi

• Ztrigpi: SINPI COSPI TANPI
• Ztrignpi: SIN COS TAN

Ztrignpi are the basic trigonometric functions through which all others could be synthesised, and they are
typically the base trigonometrics provided by GPUs for 3D, warranting their own subset.

(programmerjake: actually, all other GPU ISAs mentioned in this document have sinpi/cospi or equivalent, and
often not sin/cos, because sinpi/cospi are actually waay easier to implement because range reduction is simply a
bitwise mask, whereas for sin/cos range reduction is a full division by pi)

(Mitch: My patent USPTO 10,761,806 shows that the above statement is no longer true.)

In the case of the Ztrigpi subset, these are commonly used in for loops with a power of two number of subdivisions,
and the cost of multiplying by PI inside each loop (or cumulative addition, resulting in cumulative errors) is not
acceptable.

In for example CORDIC the multiplication by PI may be moved outside of the hardware algorithm as a loop
invariant, with no power or area penalty.

Again, therefore, if SINPI (etc.) were excluded, programmers would be penalised by being forced to divide by PI
in some circumstances. Likewise if SIN were excluded, programmers would be penaslised by being forced to
multiply by PI in some circumstances.

Thus again, a slightly different application of the same general argument applies to give Ztrignpi and Ztrigpi as
subsets. 3D GPUs will almost certainly provide both.

8.9.2.2 Zarctrigpi and Zarctrignpi

• Zarctrigpi: ATAN2PI ASINPI ACOSPI
• Zarctrignpi: ATAN2 ACOS ASIN

CHAPTER 8. TRANSCENDENTALS 324

These are extra trigonometric functions that are useful in some applications, but even for 3D GPUs, particularly
embedded and mobile class GPUs, they are not so common and so are typically synthesised, there.

Although they can be synthesised using Ztrigpi and Ztrignpi, there is, once again, both a performance penalty as
well as an accuracy penalty towards the limits, which for IEEE754 compliance is unacceptable, yet is acceptable
for 3D.

Therefore they are their own subset extensions.

8.9.2.3 Zfminmax

• fminnum08 fmaxnum08
• fmin19 fmax19
• fminnum19 fmaxnum19
• fminc fmaxc
• fminmagnum08 fmaxmagnum08
• fminmag19 fmaxmag19
• fminmagnum19 fmaxmagnum19
• fminmagc fmaxmagc

These are commonly used for vector reductions, where having them be a single instruction is critical. They are
also commonly used in GPU shaders, HPC, and general-purpose FP algorithms.

These min and max operations are quite cheap to implement hardware-wise, being comparable in cost to fcmp
+ some muxes. They’re all in one extension because once you implement some of them, the rest require only
slightly more hardware complexity.

Therefore they are their own subset extension.

8.10 Synthesis, Pseudo-code ops and macro-ops

The pseudo-ops are best left up to the compiler rather than being actual pseudo-ops, by allocating one scalar FP
register for use as a constant (loop invariant) set to “1.0” at the beginning of a function or other suitable code
block.

• fsincos - fused macro-op between fsin and fcos (issued in that order).
• fsincospi - fused macro-op between fsinpi and fcospi (issued in that order).

fatanpi example pseudo-code:

fmvis ft0, 0x3F80 // upper bits of f32 1.0 (BF16)
fatan2pis FRT, FRA, ft0

Hyperbolic function example (obviates need for Zfhyp except for high-performance or correctly-rounding):

ASINH(x) = ln(x + SQRT(x**2+1))

pow sufficient for 3D Graphics:

pow(b, x) = exp2(x * log2(b))

8.11 Evaluation and commentary

Moved to [[discussion]]

Appendix G

Big Integer Analysis

[[!tag standards]]

G.1 Analysis

DRAFT SVP64

• Revision 0.0: 21apr2022 https://www.youtube.com/watch?v=8hrIG7-E77o
• Revision 0.01: 22apr2022 removal of msubed because sv.maddedu and sv.subfe works
• Revision 0.02: 22apr2022 128/64 scalar divide, investigate Goldschmidt
• Revision 0.03: 24apr2022 add 128/64 divmod2du, similar loop to maddedu
• Revision 0.04: 26apr2022 Knuth original uses overflow on scalar div
• Revision 0.05: 27apr2022 add vector shift section (no new instructions)

Introduction

This page covers an analysis of big integer operations, to work out optimal Scalar Instructions to propose be
submitted to the OpenPOWER ISA WG, that when combined with Draft SVP64 give high performance compact
Big Integer Vector Arithmetic. Leverage of existing Scalar Power ISA instructions is also explained.

Use of smaller sub-operations is a given: worst-case in a Scalar context, addition is O(N) whilst multiply
and divide are O(Nˆ2), and their Vectorisation would reduce those (for small N) to O(1) and O(N). Knuth’s
big-integer scalar algorithms provide useful real-world grounding into the types of operations needed, making it
easy to demonstrate how they would be Vectorised.

The basic principle behind Knuth’s algorithms is to break the problem down into a single scalar op against a
Vector operand. This fits naturally with a Scalable Vector ISA such as SVP64. It only remains to exploit Carry
(1-bit and 64-bit) in a Scalable Vector context and the picture is complete.

Links

• https://web.archive.org/web/20141021201141/https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf

• https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004700.html
• https://news.ycombinator.com/item?id=21151646
• https://twitter.com/lkcl/status/1517169267912986624
• https://www.youtube.com/watch?v=8hrIG7-E77o
• https://www.reddit.com/r/OpenPOWER/comments/u8r4vf/draft_svp64_biginteger_vector_

arithmetic_for_the/
• https://bugs.libre-soc.org/show_bug.cgi?id=817

325

https://www.youtube.com/watch?v=8hrIG7-E77o
https://web.archive.org/web/20141021201141/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://web.archive.org/web/20141021201141/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://lists.libre-soc.org/pipermail/libre-soc-dev/2022-April/004700.html
https://news.ycombinator.com/item?id=21151646
https://twitter.com/lkcl/status/1517169267912986624
https://www.youtube.com/watch?v=8hrIG7-E77o
https://www.reddit.com/r/OpenPOWER/comments/u8r4vf/draft_svp64_biginteger_vector_arithmetic_for_the/
https://www.reddit.com/r/OpenPOWER/comments/u8r4vf/draft_svp64_biginteger_vector_arithmetic_for_the/
https://bugs.libre-soc.org/show_bug.cgi?id=817

APPENDIX G. BIG INTEGER ANALYSIS 326

G.2 Vector Add and Subtract

Surprisingly, no new additional instructions are required to perform a straightforward big-integer add or subtract.
Vectorised adde or addex is perfectly sufficient to produce arbitrary-length big-integer add due to the rules set in
SVP64 that all Vector Operations are directly equivalent to the strict Program Order Execution of their element-
level operations. Assuming that the two bigints (or a part thereof) have been loaded into sequentially-contiguous
registers, with the least-significant bits being in the lowest-numbered register in each case:

R0,CA = A0+B0+CA adde r0,a0,b0
|
+----------+

|
R1,CA = A1+B1+CA adde r1,a1,b1

|
+----------+

|
R2,CA = A2+B2+CA adde r2,a2,b2

This pattern - sequential execution of individual instructions with incrementing register numbers - is precisely the
very definition of how SVP64 works! Thus, due to sequential execution of adde both consuming and producing a
CA Flag, with no additions to SVP64 or to the v3.0 Power ISA, sv.adde is in effect an alias for Big-Integer
Vectorised add. As such, implementors are entirely at liberty to recognise Horizontal-First Vector adds and send
the vector of registers to a much larger and wider back-end ALU, and short-cut the intermediate storage of
XER.CA on an element level in back-end hardware that need only:

• read the first incoming XER.CA
• implement a large Vector-aware carry propagation algorithm
• store the very last XER.CA in the batch

The size and implementation of the underlying back-end SIMD ALU is entirely at the discretion of the implementer,
as is whether to deploy the above strategy. The only hard requirement for implementors of SVP64 is to comply
with strict and precise Program Order even at the Element level.

If there is pressure on the register file (or multi-million-digit big integers) then a partial-sum may be carried out
with LD and ST in a standard Cray-style Vector Loop:

aptr = A address
bptr = B address
rptr = Result address
li r0, 0 # used to help clear CA
addic r0, r0, 0 # CA to zero as well
setmvli 8 # set MAXVL to 8

loop:
setvl t0, n # n is the number of digits
mulli t1, t0, 8 # 8 bytes per digit/element
sv.ldu a0, aptr, t1 # update advances pointer
sv.ldu b0, bptr, t1 # likewise
sv.adde r0, a0, b0 # takes in CA, updates CA
sv.stu rptr, r0, t1 # pointer advances too
sub. n, n, t0 # should not alter CA
bnz loop # do more digits

This is not that different from a Scalar Big-Int add, it is just that like all Cray-style Vectorisation, a variable
number of elements are covered by one instruction. Of interest to people unfamiliar with Cray-style Vectors: if
VL is not permitted to exceed 1 (because MAXVL is set to 1) then the above actually becomes a Scalar Big-Int
add algorithm.

APPENDIX G. BIG INTEGER ANALYSIS 327

G.3 Vector Shift

Like add and subtract, strictly speaking these need no new instructions. Keeping the shift amount within the
range of the element (64 bit) a Vector bit-shift may be synthesised from a pair of shift operations and an OR, all
of which are standard Scalar Power ISA instructions that when Vectorised are exactly what is needed.

void bigrsh(unsigned s, uint64_t r[], uint64_t un[], int n) {
for (int i = 0; i < n - 1; i++)

r[i] = (un[i] >> s) | (un[i + 1] << (64 - s));
r[n - 1] = un[n - 1] >> s;

}

With SVP64 being on top of the standard scalar regfile the offset by one of the elements may be achieved simply
by referencing the same vector data offset by one. Given that all three instructions (srd, sld, or) are an SVP64
type RM-1P-2S1D and are EXTRA3, it is possible to reference the full 128 64-bit registers (r0-r127):

subfic t1, t0, 64 # compute 64-s (s in t0)
sv.srd r8.v, r24.v, t0 # shift each element of r24.v up by s
sv.sld r16.v, r25.v, t1 # offset start of vector by one (r25)
sv.or r8.v, r8.v, r16.v # OR two parts together

Predication with zeroing may be utilised on sld to ensure that the last element is zero, avoiding over-run.

The reason why three instructions are needed instead of one in the case of big-add is because multiple bits chain
through to the next element, where for add it is a single bit (carry-in, carry-out), and this is precisely what adde
already does. For multiply and divide as shown later it is worthwhile to use one scalar register effectively as a
full 64-bit carry/chain but in the case of shift, an OR may glue things together, easily, and in parallel, because
unlike sv.adde, down-chain carry-propagation through multiple elements does not occur.

With Scalar shift and rotate operations in the Power ISA already being complex and very comprehensive, it
is hard to justify creating complex 3-in 2-out variants when a sequence of 3 simple instructions will suffice.
However it is reasonably justifiable to have a 3-in 1-out instruction with an implicit source, based around the
inner operation:

r[i] = (un[i] >> s) | (un[i + 1] << (64 - s));
t <- ROT128(RA || RA1, RB[58:63])
RT <- t[64:127]

RA1 is implicitly (or explicitly, RC) greater than RA by one scalar register number, and like the other operations
below, a 128/64 shift is performed, truncating to take the lower 64 bits. By taking a Vector source RA and
assuming lower-numbered registers are lower-significant digits in the biginteger operation the entire biginteger
source may be shifted by a scalar.

For larger shift amounts beyond an element bitwidth standard register move operations may be used, or, if the
shift amount is static, to reference an alternate starting point in the registers containing the Vector elements
because SVP64 sits on top of a standard Scalar register file. sv.sld r16.v, r26.v, t1 for example is equivalent
to shifting by an extra 64 bits, compared to sv.sld r16.v, r25.v, t1.

G.4 Vector Multiply

Long-multiply, assuming an O(Nˆ2) algorithm, is performed by summing NxN separate smaller multiplications
together. Karatsuba’s algorithm reduces the number of small multiplies at the expense of increasing the number
of additions. Some algorithms follow the Vedic Multiply pattern by grouping together all multiplies of the same
magnitude/power (same column) whilst others perform row-based multiplication: a single digit of B multiplies
the entirety of A, summed a row at a time. A Row-based algorithm is the basis of the analysis below (Knuth’s
Algorithm M).

APPENDIX G. BIG INTEGER ANALYSIS 328

Multiply is tricky: 64 bit operands actually produce a 128-bit result, which clearly cannot fit into an orthogonal
register file. Most Scalar RISC ISAs have separate mul-low-half and mul-hi-half instructions, whilst some
(OpenRISC) have “Accumulators” from which the results of the multiply must be explicitly extracted. High
performance RISC advocates recommend “macro-op fusion” which is in effect where the second instruction gains
access to the cached copy of the HI half of the multiply result, which had already been computed by the first.
This approach quickly complicates the internal microarchitecture, especially at the decode phase.

Instead, Intel, in 2012, specifically added a mulx instruction, allowing both HI and LO halves of the multiply to
reach registers with a single instruction. If however done as a multiply-and-accumulate this becomes quite an
expensive operation: (3 64-Bit in, 2 64-bit registers out).

Long-multiplication may be performed a row at a time, starting with B0:

C4 C3 C2 C1 C0
A0xB0

A1xB0
A2xB0

A3xB0
R4 R3 R2 R1 R0

• R0 contains C0 plus the LO half of A0 times B0
• R1 contains C1 plus the LO half of A1 times B0 plus the HI half of A0 times B0.
• R2 contains C2 plus the LO half of A2 times B0 plus the HI half of A1 times B0.

This would on the face of it be a 4-in operation: the upper half of a previous multiply, two new operands to
multiply, and an additional accumulator (C). However if C is left out (and added afterwards with a Vector-Add)
things become more manageable.

Demonstrating in c, a Row-based multiply using a temporary vector. Adapted from a simple implemen-
tation of Knuth M: https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/bitmanip/
mulmnu.c;hb=HEAD

// this becomes the basis for sv.maddedu in RS=RC Mode,
// where k is RC. k takes the upper half of product
// and adds it in on the next iteration
k = 0;
for (i = 0; i < m; i++) {

unsigned product = u[i]*v[j] + k;
k = product>>16;
plo[i] = product; // & 0xffff

}
// this is simply sv.adde where k is XER.CA
k = 0;
for (i = 0; i < m; i++) {

t = plo[i] + w[i + j] + k;
w[i + j] = t; // (I.e., t & 0xFFFF).
k = t >> 16; // carry: should only be 1 bit

}

We therefore propose an operation that is 3-in, 2-out, that, noting that the connection between successive
mul-adds has the UPPER half of the previous operation as its input, writes the UPPER half of the current
product into a second output register for exactly the purpose of letting it be added onto the next BigInt digit.

product = RA*RB+RC
RT = lowerhalf(product)
RC = upperhalf(product)

Horizontal-First Mode therefore may be applied to just this one instruction. Successive sequential iterations
effectively use RC as a kind of 64-bit carry, and as noted by Intel in their notes on mulx, RA*RB+RC+RD cannot
overflow, so does not require setting an additional CA flag. We first cover the chain of RA*RB+RC as follows:

https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/bitmanip/mulmnu.c;hb=HEAD
https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/bitmanip/mulmnu.c;hb=HEAD

APPENDIX G. BIG INTEGER ANALYSIS 329

RT0, RC0 = RA0 * RB0 + 0
|
+----------------+

|
RT1, RC1 = RA1 * RB1 + RC0

|
+----------------+

|
RT2, RC2 = RA2 * RB2 + RC1

Following up to add each partially-computed row to what will become the final result is achieved with a Vectorised
big-int sv.adde. Thus, the key inner loop of Knuth’s Algorithm M may be achieved in four instructions, two of
which are scalar initialisation:

li r16, 0 # zero accumulator
addic r16, r16, 0 # CA to zero as well
sv.madde r0.v, r8.v, r17, r16 # mul vector
sv.adde r24.v, r24.v, r0.v # big-add row to result

Normally, in a Scalar ISA, the use of a register as both a source and destination like this would create costly
Dependency Hazards, so such an instruction would never be proposed. However: it turns out that, just as
with repeated chained application of adde, macro-op fusion may be internally applied to a sequence of these
strange multiply operations. (Such a trick works equally as well in a Scalar-only Out-of-Order microarchitecture,
although the conditions are harder to detect).

Application of SVP64

SVP64 has the means to mark registers as scalar or vector. However the available space in the prefix is extremely
limited (9 bits). With effectively 5 operands (3 in, 2 out) some compromises are needed. A little thought gives a
useful workaround: two modes, controlled by a single bit in RM.EXTRA, determine whether the 5th register is set
to RC or whether to RT+MAXVL. This then leaves only 4 registers to qualify as scalar/vector, which can use
four EXTRA2 designators and fits into the available 9-bit space.

RS=RT+MAXVL Mode:

product = RA*RB+RC
RT = lowerhalf(product)
RS=RT+MAXVL = upperhalf(product)

and RS=RC Mode:

product = RA*RB+RC
RT = lowerhalf(product)
RS=RC = upperhalf(product)

Now there is much more potential, including setting RC to a Scalar, which would be useful as a 64 bit Carry.
RC as a Vector would produce a Vector of the HI halves of a Vector of multiplies. RS=RT+MAXVL Mode
would allow that same Vector of HI halves to not be an overwrite of RC. Also it is possible to specify that any of
RA, RB or RC are scalar or vector. Overall it is extremely powerful.

G.5 Vector Divide

The simplest implementation of big-int divide is the standard schoolbook “Long Division”, set with RADIX
64 instead of Base 10. Donald Knuth’s Algorithm D performs estimates which, if wrong, are compensated for
afterwards. Essentially there are three phases:

• Calculation of the quotient estimate. This uses a single Scalar divide, which is covered separately in a later
section

• Big Integer multiply and subtract.

APPENDIX G. BIG INTEGER ANALYSIS 330

• Carry-Correction with a big integer add, if the estimate from phase 1 was wrong by one digit.

From Knuth’s Algorithm D, implemented in divmnu64.c, Phase 2 is expressed in c, as:

// Multiply and subtract.
k = 0;
for (i = 0; i < n; i++) {

p = qhat*vn[i]; // 64-bit product
t = un[i+j] - k - (p & 0xFFFFFFFFLL);
un[i+j] = t;
k = (p >> 32) - (t >> 32);

}

Where analysis of this algorithm, if a temporary vector is acceptable, shows that it can be split into two in
exactly the same way as Algorithm M, this time using subtract instead of add.

uint32_t carry = 0;
// this is just sv.maddedu again
for (int i = 0; i <= n; i++) {

uint64_t value = (uint64_t)vn[i] * (uint64_t)qhat + carry;
carry = (uint32_t)(value >> 32); // upper half for next loop
product[i] = (uint32_t)value; // lower into vector

}
bool ca = true;
// this is simply sv.subfe where ca is XER.CA
for (int i = 0; i <= n; i++) {

uint64_t value = (uint64_t)~product[i] + (uint64_t)un_j[i] + ca;
ca = value >> 32 != 0;
un_j[i] = value;

}
bool need_fixup = !ca; // for phase 3 correction

In essence then the primary focus of Vectorised Big-Int divide is in fact big-integer multiply

Detection of the fixup (phase 3) is determined by the Carry (borrow) bit at the end. Logically: if borrow was
required then the qhat estimate was too large and the correction is required, which is, again, nothing more than
a Vectorised big-integer add (one instruction). However this is not the full story

128/64-bit divisor

As mentioned above, the first part of the Knuth Algorithm D involves computing an estimate for the divisor.
This involves using the three most significant digits, performing a scalar divide, and consequently requires a
scalar division with twice the number of bits of the size of individual digits (for example, a 64-bit array). In this
example taken from divmnu64.c the digits are 32 bit and, special-casing the overflow, a 64/32 divide is sufficient
(64-bit dividend, 32-bit divisor):

// Compute estimate qhat of q[j] from top 2 digits
uint64_t dig2 = ((uint64_t)un[j + n] << 32) | un[j + n - 1];
if (un[j+n] >= vn[n-1]) {

// rhat can be bigger than 32-bit when the division overflows
qhat = UINT32_MAX;
rhat = dig2 - (uint64_t)UINT32_MAX * vn[n - 1];

} else {
qhat = dig2 / vn[n - 1]; // 64/32 divide
rhat = dig2 % vn[n - 1]; // 64/32 modulo

}
// use 3rd-from-top digit to obtain better accuracy
b = 1UL<<32;
while (rhat < b || qhat * vn[n - 2] > b * rhat + un[j + n - 2]) {

qhat = qhat - 1;

https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/biginteger/divmnu64.c;hb=HEAD
https://git.libre-soc.org/?p=libreriscv.git;a=blob;f=openpower/sv/biginteger/divmnu64.c;hb=HEAD

APPENDIX G. BIG INTEGER ANALYSIS 331

rhat = rhat + vn[n - 1];
}

However when moving to 64-bit digits (desirable because the algorithm is O(Nˆ2)) this in turn means that the
estimate has to be computed from a 128 bit dividend and a 64-bit divisor. Such an operation simply does not
exist in most Scalar 64-bit ISAs. Although Power ISA comes close with divdeu, by placing one operand in the
upper half of a 128-bit dividend, the lower half is zero. Again Power ISA has a Packed SIMD instruction vdivuq
which is a 128/128 (quad) divide, not a 128/64, and its use would require considerable effort to move registers
to and from GPRs. Some investigation into soft-implementations of 128/128 or 128/64 divide show it to be
typically implemented bit-wise, with all that implies.

The irony is, therefore, that attempting to improve big-integer divide by moving to 64-bit digits in order to take
advantage of the efficiency of 64-bit scalar multiply when Vectorised would instead lock up CPU time performing
a 128/64 scalar division. With the Vector Multiply operations being critically dependent on that qhat estimate,
and because that scalar is as an input into each of the vector digit multiples, as a Dependency Hazard it would
cause all Parallel SIMD Multiply back-ends to sit 100% idle, waiting for that one scalar value.

Whilst one solution is to reduce the digit width to 32-bit in order to go back to 64/32 divide, this increases the
completion time by a factor of 4 due to the algorithm being O(Nˆ2).

Reducing completion time of 128/64-bit Scalar division

Scalar division is a known computer science problem because, as even the Big-Int Divide shows, it requires
looping around a multiply (or, if reduced to 1-bit per loop, a simple compare, shift, and subtract). If the simplest
approach were deployed then the completion time for the 128/64 scalar divide would be a whopping 128 cycles.
To be workable an alternative algorithm is required, and one of the fastest appears to be Goldschmidt Division.
Whilst typically deployed for Floating Point, there is no reason why it should not be adapted to Fixed Point.
In this way a Scalar Integer divide can be performed in the same time-order as Newton-Raphson, using two
hardware multipliers and a subtract.

Back to Vector carry-looping

There is however another reason for having a 128/64 division instruction, and it’s effectively the reverse of
maddedu. Look closely at Algorithm D when the divisor is only a scalar (v[0]):

k = 0; // the case of a
for (j = m - 1; j >= 0; j--)
{ // single-digit

uint64_t dig2 = ((k << 32) | u[j]);
q[j] = dig2 / v[0]; // divisor here.
k = dig2 % v[0]; // modulo back into next loop

}

Here, just as with maddedu which can put the hi-half of the 128 bit product back in as a form of 64-bit carry, a
scalar divisor of a vector dividend puts the modulo back in as the hi-half of a 128/64-bit divide.

RT0 = ((0<<64) | RA0) / RB0
RC0 = ((0<<64) | RA0) % RB0
|
+-------+

|
RT1 = ((RC0<<64) | RA1) / RB1

RC1 = ((RC0<<64) | RA1) % RB1
|
+-------+

|
RT2 = ((RC1<<64) | RA2) / RB2

RC2 = ((RC1<<64) | RA2) % RB2

By a nice coincidence this is exactly the same 128/64-bit operation needed (once, rather than chained) for the
qhat estimate if it may produce both the quotient and the remainder. The pseudocode cleanly covering both

APPENDIX G. BIG INTEGER ANALYSIS 332

scenarios (leaving out overflow for clarity) can be written as:

divmod2du RT,RA,RB,RC

dividend = (RC) || (RA)
divisor = EXTZ128(RB)
RT = UDIV(dividend, divisor)
RS = UREM(dividend, divisor)

Again, in an SVP64 context, using EXTRA mode bit 8 allows for selecting whether RS=RC or RS=RT+MAXVL.
Similar flexibility in the scalar-vector settings allows the instruction to perform full parallel vector div/mod, or
act in loop-back mode for big-int division by a scalar, or for a single scalar 128/64 div/mod.

Again, just as with sv.maddedu and sv.adde, adventurous implementors may perform massively-wide DIV/MOD
by transparently merging (fusing) the Vector element operations together, only inputting a single RC and
outputting the last RC. Where efficient algorithms such as Goldschmidt are deployed internally this could
dramatically reduce the cycle completion time for massive Vector DIV/MOD. Thus, just as with the other
operations the apparent limitation of creating chains is overcome: SVP64 is, by design, an “expression of intent”
where the implementor is free to achieve that intent in any way they see fit as long as strict precise-aware
Program Order is preserved (even on the VL for-loops).

Just as with divdeu on which this instruction is based an overflow detection is required. When the divisor is
too small compared to the dividend then the result may not fit into 64 bit. Knuth’s original algorithm detects
overflow and manually places 0xffffffff (all ones) into qhat. With there being so many operands already in
divmod2du a cmpl instruction can be used instead to detect the overflow. This saves having to add an Rc=1 or
OE=1 mode when the available space in VA-Form EXT04 is extremely limited.

Looking closely at the loop however we can see that overflow will not occur. The initial value k is zero: as long
as a divide-by-zero is not requested this always fulfils the condition RC < RA, and on subsequent iterations the
new k, being the modulo, is always less than the divisor as well. Thus the condition (the loop invariant) RC <
RA is preserved, as long as RC starts at zero.

Limitations

One of the worst things for any ISA is that an algorithm’s completion time is directly affected by different
implementations having instructions take longer or shorter times. Knuth’s Big-Integer division is unfortunately
one such algorithm.

Assuming that the computation of qhat takes 128 cycles to complete on a small power-efficient embedded design,
this time would dominate compared to the 64 bit multiplications. However if the element width was reduced to
8, such that the computation of qhat only took 16 cycles, the calculation of qhat would not dominate, but the
number of multiplications would rise: somewhere in between there would be an elwidth and a Vector Length
that would suit that particular embedded processor.

By contrast a high performance microarchitecture may deploy Goldschmidt or other efficient Scalar Division,
which could complete 128/64 qhat computation in say only 5 to 8 cycles, which would be tolerable. Thus, for
general-purpose software, it would be necessary to ship multiple implementations of the same algorithm and
dynamically select the best one.

The very fact that programmers even have to consider multiple implementations and compare their performance
is an unavoidable nuisance. SVP64 is supposed to be designed such that only one implementation of any given
algorithm is needed. In some ways it is reassuring that some algorithms just don’t fit. Slightly more reassuring
is that Goldschmidt Divide, which uses two multiplications that can be performed in parallel, would be a
much better fit with SVP64 (and Vector Processing in general), the only downside being that it is regarded as
worthwhile for much larger integers.

G.6 Conclusion

TODO

Appendix H

Bitmanip pseudocode

H.1 Ternary Bitwise Logic Immediate

TLI-Form

• ternlogi RT,RA,RB,TLI (Rc=0)
• ternlogi. RT,RA,RB,TLI (Rc=1)

Pseudo-code:

result <- [0] * XLEN
do i = 0 to XLEN - 1
idx <- (RT)[i] || (RA)[i] || (RB)[i]
result[i] <- TLI[7-idx]

RT <- result

Special Registers Altered:

CR0 (if Rc=1)

H.2 Generalized Bit-Reverse

X-Form

• grev RT,RA,RB (Rc=0)
• grev. RT,RA,RB (Rc=1)

Pseudo-code:

result <- [0] * XLEN
b <- EXTZ64(RB)
do i = 0 to XLEN - 1
idx <- b[64-log2(XLEN):63] ^ i
result[i] <- (RA)[idx]

RT <- result

Special Registers Altered:

CR0 (if Rc=1)

333

APPENDIX H. BITMANIP PSEUDOCODE 334

H.3 Generalized Bit-Reverse Immediate

XB-Form

• grevi RT,RA,XBI (Rc=0)
• grevi. RT,RA,XBI (Rc=1)

Pseudo-code:

result <- [0] * XLEN
do i = 0 to XLEN - 1
idx <- XBI[6-log2(XLEN):5] ^ i
result[i] <- (RA)[idx]

RT <- result

Special Registers Altered:

CR0 (if Rc=1)

H.4 Generalized Bit-Reverse Word

X-Form

• grevw RT,RA,RB (Rc=0)
• grevw. RT,RA,RB (Rc=1)

Pseudo-code:

result <- [0] * (XLEN / 2)
a <- (RA)[XLEN/2:XLEN-1]
b <- EXTZ64(RB)
do i = 0 to XLEN / 2 - 1
idx <- b[64-log2(XLEN/2):63] ^ i
result[i] <- a[idx]

RT <- ([0] * (XLEN / 2)) || result

Special Registers Altered:

CR0 (if Rc=1)

H.5 Generalized Bit-Reverse Word Immediate

X-Form

• grevwi RT,RA,SH (Rc=0)
• grevwi. RT,RA,SH (Rc=1)

Pseudo-code:

result <- [0] * (XLEN / 2)
a <- (RA)[XLEN/2:XLEN-1]
do i = 0 to XLEN / 2 - 1
idx <- SH[5-log2(XLEN/2):4] ^ i
result[i] <- a[idx]

RT <- ([0] * (XLEN / 2)) || result

Special Registers Altered:

CR0 (if Rc=1)

APPENDIX H. BITMANIP PSEUDOCODE 335

H.6 Add With Shift By Immediate

Z23-Form

• shadd RT,RA,RB,sm (Rc=0)
• shadd. RT,RA,RB,sm (Rc=1)

Pseudo-code:

n <- (RB)
m <- ((0b0 || sm) + 1)
RT <- (n[m:XLEN-1] || [0]*m) + (RA)

Special Registers Altered:

CR0 (if Rc=1)

H.7 Add With Shift By Immediate Word

Z23-Form

• shaddw RT,RA,RB,sm (Rc=0)
• shaddw. RT,RA,RB,sm (Rc=1)

Pseudo-code:

n <- ([0]*(XLEN/2)) || (RB)[XLEN/2:XLEN-1]
if (RB)[XLEN/2] = 1 then

n[0:XLEN/2-1] <- [1]*(XLEN/2)
m <- ((0b0 || sm) + 1)
RT <- (n[m:XLEN-1] || [0]*m) + (RA)

Special Registers Altered:

CR0 (if Rc=1)

H.8 Add With Shift By Immediate Unsigned Word

Z23-Form

• shadduw RT,RA,RB,sm (Rc=0)
• shadduw. RT,RA,RB,sm (Rc=1)

Pseudo-code:

n <- ([0]*(XLEN/2)) || (RB)[XLEN/2:XLEN-1]
m <- ((0b0 || sm) + 1)
RT <- (n[m:XLEN-1] || [0]*m) + (RA)

Special Registers Altered:

CR0 (if Rc=1)

Appendix I

Floating Point pseudocode

I.1 [DRAFT] Floating Add FFT/DCT [Single]

A-Form

• ffadds FRT,FRA,FRB (Rc=0)
• ffadds. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPADD32(FRA, FRB)
FRS <- FPSUB32(FRB, FRA)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

I.2 [DRAFT] Floating Add FFT/DCT [Double]

A-Form

• ffadd FRT,FRA,FRB (Rc=0)
• ffadd. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPADD64(FRA, FRB)
FRS <- FPSUB64(FRB, FRA)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

336

APPENDIX I. FLOATING POINT PSEUDOCODE 337

I.3 [DRAFT] Floating Subtract FFT/DCT [Single]

A-Form

• ffsubs FRT,FRA,FRB (Rc=0)
• ffsubs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPSUB32(FRB, FRA)
FRS <- FPADD32(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

I.4 [DRAFT] Floating Subtract FFT/DCT [Double]

A-Form

• ffsub FRT,FRA,FRB (Rc=0)
• ffsub. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPSUB64(FRB, FRA)
FRS <- FPADD64(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

I.5 [DRAFT] Floating Multiply FFT/DCT [Single]

A-Form

• ffmuls FRT,FRA,FRC (Rc=0)
• ffmuls. FRT,FRA,FRC (Rc=1)

Pseudo-code:

FRT <- FPMUL32(FRA, FRC)
FRS <- FPMUL32(FRA, FRC, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

APPENDIX I. FLOATING POINT PSEUDOCODE 338

I.6 [DRAFT] Floating Multiply FFT/DCT [Double]

A-Form

• ffmul FRT,FRA,FRC (Rc=0)
• ffmul. FRT,FRA,FRC (Rc=1)

Pseudo-code:

FRT <- FPMUL64(FRA, FRC)
FRS <- FPMUL64(FRA, FRC, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

I.7 [DRAFT] Floating Divide FFT/DCT [Single]

A-Form

• ffdivs FRT,FRA,FRB (Rc=0)
• ffdivs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPDIV32(FRA, FRB)
FRS <- FPDIV32(FRA, FRB, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

I.8 [DRAFT] Floating Divide FFT/DCT [Double]

A-Form

• ffdiv FRT,FRA,FRB (Rc=0)
• ffdiv. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPDIV64(FRA, FRB)
FRS <- FPDIV64(FRA, FRB, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

APPENDIX I. FLOATING POINT PSEUDOCODE 339

I.9 [DRAFT] Floating Twin Multiply-Add DCT [Single]

DCT-Form

• fdmadds FRT,FRA,FRB (Rc=0)
• fdmadds. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRS <- FPADD32(FRT, FRB)
sub <- FPSUB32(FRT, FRB)
FRT <- FPMUL32(FRA, sub)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

I.10 [DRAFT] Floating Multiply-Add FFT [Single]

A-Form

• ffmadds FRT,FRA,FRB (Rc=0)
• ffmadds. FRT,FRA,FRB (Rc=1)

Pseudo-code:

tmp <- FRT
FRT <- FPMULADD32(tmp, FRA, FRB, 1, 1)
FRS <- FPMULADD32(tmp, FRA, FRB, -1, 1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

I.11 [DRAFT] Floating Multiply-Sub FFT [Single]

A-Form

• ffmsubs FRT,FRA,FRB (Rc=0)
• ffmsubs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

tmp <- FRT
FRT <- FPMULADD32(tmp, FRA, FRB, 1, -1)
FRS <- FPMULADD32(tmp, FRA, FRB, -1, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

APPENDIX I. FLOATING POINT PSEUDOCODE 340

I.12 [DRAFT] Floating Negative Multiply-Add FFT [Single]

A-Form

• ffnmadds FRT,FRA,FRB (Rc=0)
• ffnmadds. FRT,FRA,FRB (Rc=1)

Pseudo-code:

tmp <- FRT
FRT <- FPMULADD32(tmp, FRA, FRB, -1, -1)
FRS <- FPMULADD32(tmp, FRA, FRB, 1, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

I.13 [DRAFT] Floating Negative Multiply-Sub FFT [Single]

A-Form

• ffnmsubs FRT,FRA,FRB (Rc=0)
• ffnmsubs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

tmp <- FRT
FRT <- FPMULADD32(tmp, FRA, FRB, -1, 1)
FRS <- FPMULADD32(tmp, FRA, FRB, 1, 1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Appendix J

Fixed Point pseudocode

J.1 [DRAFT] Multiply and Add Extended Doubleword Unsigned

VA-Form

• maddedu RT,RA,RB,RC

Pseudo-code:

<!-- SVP64: RA,RB,RC,RT have EXTRA2, RS as below
<!-- bit 8 of EXTRA is set : RS.[s|v]=RT.[s|v]+MAXVL
<!-- bit 8 of EXTRA is clear: RS.[s|v]=RC.[s|v]
prod[0:2*XLEN-1] <- (RA) * (RB)
sum[0:2*XLEN-1] <- ([0] * XLEN || (RC)) + prod
RT <- sum[XLEN:2*XLEN-1]
RS <- sum[0:XLEN-1]

Special Registers Altered:

None

J.2 [DRAFT] Multiply and Add Extended Doubleword Unsigned
Signed

VA-Form

• maddedus RT,RA,RB,RC

Pseudo-code:

<!-- SVP64: RA,RB,RC,RT have EXTRA2, RS as below
<!-- bit 8 of EXTRA is set : RS.[s|v]=RT.[s|v]+MAXVL
<!-- bit 8 of EXTRA is clear: RS.[s|v]=RC.[s|v]
<!-- no MULUS, so do it manually -->
prod[0:XLEN*2-1] <- [0] * (XLEN * 2)
if (RB)[0] != 0 then

prod[0:XLEN*2-1] <- -((RA) * -(RB))
else

prod[0:XLEN*2-1] <- (RA) * (RB)
<!-- no EXTS2XL, so do it manually -->
sum[0:XLEN*2-1] <- prod + (EXTSXL((RC)[0], 1) || (RC))

341

APPENDIX J. FIXED POINT PSEUDOCODE 342

RT <- sum[XLEN:2*XLEN-1]
RS <- sum[0:XLEN-1]

Special Registers Altered:

None

J.3 [DRAFT] Divide/Modulo Double-width Doubleword Unsigned

VA-Form

• divmod2du RT,RA,RB,RC

Pseudo-code:

<!-- SVP64: RA,RB,RC,RT have EXTRA2, RS as below
<!-- bit 8 of EXTRA is set : RS.[s|v]=RT.[s|v]+MAXVL
<!-- bit 8 of EXTRA is clear: RS.[s|v]=RC.[s|v]
if ((RC) <u (RB)) & ((RB) != [0]*XLEN) then

dividend[0:(XLEN*2)-1] <- (RC) || (RA)
divisor[0:(XLEN*2)-1] <- [0]*XLEN || (RB)
result <- dividend / divisor
modulo <- dividend % divisor
RT <- result[XLEN:(XLEN*2)-1]
RS <- modulo[XLEN:(XLEN*2)-1]
overflow <- 0

else
overflow <- 1
RT <- [1]*XLEN
RS <- [0]*XLEN

Special Registers Altered:

XER.OV

J.4 [DRAFT] Double-width Shift Left Doubleword

VA2-Form

• dsld RT,RA,RB,RC (Rc=0)
• dsld. RT,RA,RB,RC (Rc=1)

Pseudo-code:

n <- (RB)[58:63]
v <- ROTL64((RA), n)
mask <- MASK(0, 63-n)
RT <- (v[0:63] & mask) | ((RC) & ¬mask)
RS <- v[0:63] & ¬mask
overflow <- 0 # relevant only when Rc=1
if RS != [0]*64 then

overflow <- 1 # relevant only when Rc=1

Special Registers Altered:

CR0 (if Rc=1)

APPENDIX J. FIXED POINT PSEUDOCODE 343

J.5 [DRAFT] Double-width Shift Right Doubleword

VA2-Form

• dsrd RT,RA,RB,RC (Rc=0)
• dsrd. RT,RA,RB,RC (Rc=1)

Pseudo-code:

n <- (RB)[58:63]
v <- ROTL64((RA), 64-n)
mask <- MASK(n, 63)
RT <- (v[0:63] & mask) | ((RC) & ¬mask)
RS <- v[0:63] & ¬mask
overflow <- 0 # relevant only when Rc=1
if RS != [0]*64 then

overflow <- 1 # relevant only when Rc=1

Special Registers Altered:

CR0 (if Rc=1)

Part IV

Scalar Power ISA pseudocode

344

Preamble

This section contains updated pseudocode from the Power ISA Specification v3.0B to be executable. Several
bugfixes in Power ISA v3.0B have been found and reported as a direct result due to actually running the
pseudocode as executable code in a Simulator. A Formal Correctness Proof Research Paper written by Boris
Shingarov.

Additionally, with SVP64 performing element-width over-rides it is the Scalar pseudocode that needs adapting
to variable-length (XLEN). Maintaining duplicate identical copies in every respect except for an XLEN as part
of the Simple-V Specification is completely pointless and a waste of time: the updates to include XLEN need to
be part of the Scalar Power ISA Specification. This has the added benefit that it makes life much easier for
32-bit implementors, and has an additional benefit of making it possible for the Scalar Power ISA to extend to
128-bit in future (like RV128).

345

Binary Coded Decimal pseudocode

J.1 Convert Declets To Binary Coded Decimal

X-Form

• cdtbcd RA,RS

Pseudo-code:

src <- [0]*64
src[64-XLEN:63] <- (RS)
result <- [0]*64
do i = 0 to 1
n <- i * 32
result[n+0:n+7] <- 0
result[n+8:n+19] <- DPD_TO_BCD(src[n+12:n+21])
result[n+20:n+31] <- DPD_TO_BCD(src[n+22:n+31])

RA <- result[64-XLEN:63]

Special Registers Altered:

None

J.2 Add and Generate Sixes

XO-Form

• addg6s RT,RA,RB

Pseudo-code:

sum <- (0b0000 || (RA)) + (0b0000 || (RB))
carries <- sum ^ (0b0000 || (RA)) ^ (0b0000 || (RB))
ones <- [0b0001] * (XLEN / 4)
nibbles_need_sixes <- ¬carries[0:XLEN-1] & ones
RT <- nibbles_need_sixes * 0b0110

Special Registers Altered:

None

J.3 Convert Binary Coded Decimal To Declets

X-Form

• cbcdtd RA,RS

346

BINARY CODED DECIMAL PSEUDOCODE 347

Pseudo-code:

src <- [0]*64
src[64-XLEN:63] <- (RS)
result <- [0]*64
do i = 0 to 1
n <- i * 32
result[n+0:n+11] <- 0
result[n+12:n+21] <- BCD_TO_DPD(src[n+8:n+19])
result[n+22:n+31] <- BCD_TO_DPD(src[n+20:n+31])

RA <- result[64-XLEN:63]

Special Registers Altered:

None

Branch pseudocode

J.4 Branch

I-Form

• b target_addr (AA=0 LK=0)
• ba target_addr (AA=1 LK=0)
• bl target_addr (AA=0 LK=1)
• bla target_addr (AA=1 LK=1)

Pseudo-code:

if AA then NIA <-iea EXTS(LI || 0b00)
else NIA <-iea CIA + EXTS(LI || 0b00)
if LK then LR <-iea CIA + 4

Special Registers Altered:

LR (if LK=1)

J.5 Branch Conditional

B-Form

• bc BO,BI,target_addr (AA=0 LK=0)
• bca BO,BI,target_addr (AA=1 LK=0)
• bcl BO,BI,target_addr (AA=0 LK=1)
• bcla BO,BI,target_addr (AA=1 LK=1)

Pseudo-code:

if (mode_is_64bit) then M <- 0
else M <- 32
if ¬BO[2] then CTR <- CTR - 1
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then
if AA then NIA <-iea EXTS(BD || 0b00)
else NIA <-iea CIA + EXTS(BD || 0b00)

if LK then LR <-iea CIA + 4

Special Registers Altered:

CTR (if BO2=0)
LR (if LK=1)

348

BRANCH PSEUDOCODE 349

J.6 Branch Conditional to Link Register

XL-Form

• bclr BO,BI,BH (LK=0)
• bclrl BO,BI,BH (LK=1)

Pseudo-code:

if (mode_is_64bit) then M <- 0
else M <- 32
if ¬BO[2] then CTR <- CTR - 1
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then NIA <-iea LR[0:61] || 0b00
if LK then LR <-iea CIA + 4

Special Registers Altered:

CTR (if BO2=0)
LR (if LK=1)

J.7 Branch Conditional to Count Register

XL-Form

• bcctr BO,BI,BH (LK=0)
• bcctrl BO,BI,BH (LK=1)

Pseudo-code:

cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if cond_ok then NIA <-iea CTR[0:61] || 0b00
if LK then LR <-iea CIA + 4

Special Registers Altered:

LR (if LK=1)

J.8 Branch Conditional to Branch Target Address Register

XL-Form

• bctar BO,BI,BH (LK=0)
• bctarl BO,BI,BH (LK=1)

Pseudo-code:

if (mode_is_64bit) then M <- 0
else M <- 32
if ¬BO[2] then CTR <- CTR - 1
ctr_ok <- BO[2] | ((CTR[M:63] != 0) ^ BO[3])
cond_ok <- BO[0] | ¬(CR[BI+32] ^ BO[1])
if ctr_ok & cond_ok then NIA <-iea TAR[0:61] || 0b00
if LK then LR <-iea CIA + 4

Special Registers Altered:

BRANCH PSEUDOCODE 350

CTR (if BO2=0)
LR (if LK=1)

Fixed Point Compare pseudocode

J.9 Compare Immediate

D-Form

• cmpi BF,L,RA,SI

Pseudo-code:

if L = 0 then a <- EXTS((RA)[XLEN/2:XLEN-1])
else a <- (RA)
if a < EXTS(SI) then c <- 0b100
else if a > EXTS(SI) then c <- 0b010
else c <- 0b001
CR[4*BF+32:4*BF+35] <- c || XER[SO]

Special Registers Altered:

CR field BF

J.10 Compare

X-Form

• cmp BF,L,RA,RB

Pseudo-code:

if L = 0 then
a <- EXTS((RA)[XLEN/2:XLEN-1])
b <- EXTS((RB)[XLEN/2:XLEN-1])

else
a <- (RA)
b <- (RB)

if a < b then c <- 0b100
else if a > b then c <- 0b010
else c <- 0b001
CR[4*BF+32:4*BF+35] <- c || XER[SO]

Special Registers Altered:

CR field BF

351

FIXED POINT COMPARE PSEUDOCODE 352

J.11 Compare Logical Immediate

D-Form

• cmpli BF,L,RA,UI

Pseudo-code:

if L = 0 then a <- [0]*(XLEN/2) || (RA)[XLEN/2:XLEN-1]
else a <- (RA)
if a <u ([0]*(XLEN-16) || UI) then c <- 0b100
else if a >u ([0]*(XLEN-16) || UI) then c <- 0b010
else c <- 0b001
CR[4*BF+32:4*BF+35] <- c || XER[SO]

Special Registers Altered:

CR field BF

J.12 Compare Logical

X-Form

• cmpl BF,L,RA,RB

Pseudo-code:

if L = 0 then
a <- [0]*(XLEN/2) || (RA)[XLEN/2:XLEN-1]
b <- [0]*(XLEN/2) || (RB)[XLEN/2:XLEN-1]

else
a <- (RA)
b <- (RB)

if a <u b then c <- 0b100
else if a >u b then c <- 0b010
else c <- 0b001
CR[4*BF+32:4*BF+35] <- c || XER[SO]

Special Registers Altered:

CR field BF

J.13 Compare Ranged Byte

X-Form

• cmprb BF,L,RA,RB

Pseudo-code:

src1 <- EXTZ((RA)[XLEN-8:XLEN-1])
src21hi <- EXTZ((RB)[XLEN-32:XLEN-23])
src21lo <- EXTZ((RB)[XLEN-24:XLEN-17])
src22hi <- EXTZ((RB)[XLEN-16:XLEN-9])
src22lo <- EXTZ((RB)[XLEN-8:XLEN-1])
if L=0 then

in_range <- (src22lo <= src1) & (src1 <= src22hi)
else

FIXED POINT COMPARE PSEUDOCODE 353

in_range <- (((src21lo <= src1) & (src1 <= src21hi)) |
((src22lo <= src1) & (src1 <= src22hi)))

CR[4*BF+32] <- 0b0
CR[4*BF+33] <- in_range
CR[4*BF+34] <- 0b0
CR[4*BF+35] <- 0b0

Special Registers Altered:

CR field BF

J.14 Compare Equal Byte

X-Form

• cmpeqb BF,RA,RB

Pseudo-code:

src1 <- GPR[RA]
src1 <- src1[XLEN-8:XLEN-1]
match <- 0b0
for i = 0 to ((XLEN/8)-1)

match <- (match | (src1 = (RB)[8*i:8*i+7]))
CR[4*BF+32] <- 0b0
CR[4*BF+33] <- match
CR[4*BF+34] <- 0b0
CR[4*BF+35] <- 0b0

Special Registers Altered:

CR field BF

Condition Register pseudocode

J.15 Condition Register AND

XL-Form

• crand BT,BA,BB

Pseudo-code:

CR[BT+32] <- CR[BA+32] & CR[BB+32]

Special Registers Altered:

CR[BT+32]

J.16 Condition Register NAND

XL-Form

• crnand BT,BA,BB

Pseudo-code:

CR[BT+32] <- ¬(CR[BA+32] & CR[BB+32])

Special Registers Altered:

CR[BT+32]

J.17 Condition Register OR

XL-Form

• cror BT,BA,BB

Pseudo-code:

CR[BT+32] <- CR[BA+32] | CR[BB+32]

Special Registers Altered:

CR[BT+32]

354

CONDITION REGISTER PSEUDOCODE 355

J.18 Condition Register XOR

XL-Form

• crxor BT,BA,BB

Pseudo-code:

CR[BT+32] <- CR[BA+32] ^ CR[BB+32]

Special Registers Altered:

CR[BT+32]

J.19 Condition Register NOR

XL-Form

• crnor BT,BA,BB

Pseudo-code:

CR[BT+32] <- ¬(CR[BA+32] | CR[BB+32])

Special Registers Altered:

CR[BT+32]

J.20 Condition Register Equivalent

XL-Form

• creqv BT,BA,BB

Pseudo-code:

CR[BT+32] <- ¬(CR[BA+32] ^ CR[BB+32])

Special Registers Altered:

CR[BT+32]

J.21 Condition Register AND with Complement

XL-Form

• crandc BT,BA,BB

Pseudo-code:

CR[BT+32] <- CR[BA+32] & ¬CR[BB+32]

Special Registers Altered:

CR[BT+32]

CONDITION REGISTER PSEUDOCODE 356

J.22 Condition Register OR with Complement

XL-Form

• crorc BT,BA,BB

Pseudo-code:

CR[BT+32] <- CR[BA+32] | ¬CR[BB+32]

Special Registers Altered:

CR[BT+32]

J.23 Move Condition Register Field

XL-Form

• mcrf BF,BFA

Pseudo-code:

CR[4*BF+32:4*BF+35] <- CR[4*BFA+32:4*BFA+35]

Special Registers Altered:

CR field BF

Fixed Point Arithmetic pseudocode

J.24 Add Immediate

D-Form

• addi RT,RA,SI

Pseudo-code:

RT <- (RA|0) + EXTS(SI)

Special Registers Altered:

None

J.25 Add Immediate Shifted

D-Form

• addis RT,RA,SI

Pseudo-code:

RT <- (RA|0) + EXTS(SI || [0]*16)

Special Registers Altered:

None

J.26 Add PC Immediate Shifted

DX-Form

• addpcis RT,D

Pseudo-code:

D <- d0||d1||d2
RT <- NIA + EXTS(D || [0]*16)

Special Registers Altered:

None

357

FIXED POINT ARITHMETIC PSEUDOCODE 358

J.27 Add

XO-Form

• add RT,RA,RB (OE=0 Rc=0)
• add. RT,RA,RB (OE=0 Rc=1)
• addo RT,RA,RB (OE=1 Rc=0)
• addo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- (RA) + (RB)

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.28 Subtract From

XO-Form

• subf RT,RA,RB (OE=0 Rc=0)
• subf. RT,RA,RB (OE=0 Rc=1)
• subfo RT,RA,RB (OE=1 Rc=0)
• subfo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + (RB) + 1

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.29 Add Immediate Carrying

D-Form

• addic RT,RA,SI

Pseudo-code:

RT <- (RA) + EXTS(SI)

Special Registers Altered:

CA CA32

J.30 Add Immediate Carrying and Record

D-Form

• addic. RT,RA,SI

Pseudo-code:

RT <- (RA) + EXTS(SI)

FIXED POINT ARITHMETIC PSEUDOCODE 359

Special Registers Altered:

CR0 CA CA32

J.31 Subtract From Immediate Carrying

D-Form

• subfic RT,RA,SI

Pseudo-code:

RT <- ¬(RA) + EXTS(SI) + 1

Special Registers Altered:

CA CA32

J.32 Add Carrying

XO-Form

• addc RT,RA,RB (OE=0 Rc=0)
• addc. RT,RA,RB (OE=0 Rc=1)
• addco RT,RA,RB (OE=1 Rc=0)
• addco. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- (RA) + (RB)

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.33 Subtract From Carrying

XO-Form

• subfc RT,RA,RB (OE=0 Rc=0)
• subfc. RT,RA,RB (OE=0 Rc=1)
• subfco RT,RA,RB (OE=1 Rc=0)
• subfco. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + (RB) + 1

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

FIXED POINT ARITHMETIC PSEUDOCODE 360

J.34 Add Extended

XO-Form

• adde RT,RA,RB (OE=0 Rc=0)
• adde. RT,RA,RB (OE=0 Rc=1)
• addeo RT,RA,RB (OE=1 Rc=0)
• addeo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- (RA) + (RB) + CA

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.35 Subtract From Extended

XO-Form

• subfe RT,RA,RB (OE=0 Rc=0)
• subfe. RT,RA,RB (OE=0 Rc=1)
• subfeo RT,RA,RB (OE=1 Rc=0)
• subfeo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + (RB) + CA

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.36 Add to Minus One Extended

XO-Form

• addme RT,RA (OE=0 Rc=0)
• addme. RT,RA (OE=0 Rc=1)
• addmeo RT,RA (OE=1 Rc=0)
• addmeo. RT,RA (OE=1 Rc=1)

Pseudo-code:

RT <- (RA) + CA - 1

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

FIXED POINT ARITHMETIC PSEUDOCODE 361

J.37 Subtract From Minus One Extended

XO-Form

• subfme RT,RA (OE=0 Rc=0)
• subfme. RT,RA (OE=0 Rc=1)
• subfmeo RT,RA (OE=1 Rc=0)
• subfmeo. RT,RA (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + CA - 1

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.38 Add Extended using alternate carry bit

Z23-Form

• addex RT,RA,RB,CY

Pseudo-code:

if CY=0 then RT <- (RA) + (RB) + OV

Special Registers Altered:

OV OV32 (if CY=0)

J.39 Subtract From Zero Extended

XO-Form

• subfze RT,RA (OE=0 Rc=0)
• subfze. RT,RA (OE=0 Rc=1)
• subfzeo RT,RA (OE=1 Rc=0)
• subfzeo. RT,RA (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + CA

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.40 Add to Zero Extended

XO-Form

• addze RT,RA (OE=0 Rc=0)
• addze. RT,RA (OE=0 Rc=1)

FIXED POINT ARITHMETIC PSEUDOCODE 362

• addzeo RT,RA (OE=1 Rc=0)
• addzeo. RT,RA (OE=1 Rc=1)

Pseudo-code:

RT <- (RA) + CA

Special Registers Altered:

CA CA32
CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.41 Negate

XO-Form

• neg RT,RA (OE=0 Rc=0)
• neg. RT,RA (OE=0 Rc=1)
• nego RT,RA (OE=1 Rc=0)
• nego. RT,RA (OE=1 Rc=1)

Pseudo-code:

RT <- ¬(RA) + 1

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.42 Multiply Low Immediate

D-Form

• mulli RT,RA,SI

Pseudo-code:

prod[0:(XLEN*2)-1] <- MULS((RA), EXTS(SI))
RT <- prod[XLEN:(XLEN*2)-1]

Special Registers Altered:

None

J.43 Multiply High Word

XO-Form

• mulhw RT,RA,RB (Rc=0)
• mulhw. RT,RA,RB (Rc=1)

Pseudo-code:

prod[0:XLEN-1] <- MULS((RA)[XLEN/2:XLEN-1], (RB)[XLEN/2:XLEN-1])
RT[XLEN/2:XLEN-1] <- prod[0:(XLEN/2)-1]
RT[0:(XLEN/2)-1] <- undefined(prod[0:(XLEN/2)-1])

FIXED POINT ARITHMETIC PSEUDOCODE 363

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

J.44 Multiply Low Word

XO-Form

• mullw RT,RA,RB (OE=0 Rc=0)
• mullw. RT,RA,RB (OE=0 Rc=1)
• mullwo RT,RA,RB (OE=1 Rc=0)
• mullwo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

prod[0:XLEN-1] <- MULS((RA)[XLEN/2:XLEN-1], (RB)[XLEN/2:XLEN-1])
RT <- prod
overflow <- ((prod[0:XLEN/2] != [0]*((XLEN/2)+1)) &

(prod[0:XLEN/2] != [1]*((XLEN/2)+1)))

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.45 Multiply High Word Unsigned

XO-Form

• mulhwu RT,RA,RB (Rc=0)
• mulhwu. RT,RA,RB (Rc=1)

Pseudo-code:

prod[0:XLEN-1] <- (RA)[XLEN/2:XLEN-1] * (RB)[XLEN/2:XLEN-1]
RT[XLEN/2:XLEN-1] <- prod[0:(XLEN/2)-1]
RT[0:(XLEN/2)-1] <- undefined(prod[0:(XLEN/2)-1])

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)

J.46 Divide Word

XO-Form

• divw RT,RA,RB (OE=0 Rc=0)
• divw. RT,RA,RB (OE=0 Rc=1)
• divwo RT,RA,RB (OE=1 Rc=0)
• divwo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:(XLEN/2)-1] <- (RA)[XLEN/2:XLEN-1]
divisor[0:(XLEN/2)-1] <- (RB) [XLEN/2:XLEN-1]
if (((dividend = (0b1 || ([0b0] * ((XLEN/2)-1)))) &

(divisor = [1]*(XLEN/2))) |

FIXED POINT ARITHMETIC PSEUDOCODE 364

(divisor = [0]*(XLEN/2))) then
RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

else
RT[XLEN/2:XLEN-1] <- DIVS(dividend, divisor)
RT[0:(XLEN/2)-1] <- undefined([0]*(XLEN/2))
overflow <- 0

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

J.47 Divide Word Unsigned

XO-Form

• divwu RT,RA,RB (OE=0 Rc=0)
• divwu. RT,RA,RB (OE=0 Rc=1)
• divwuo RT,RA,RB (OE=1 Rc=0)
• divwuo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:(XLEN/2)-1] <- (RA)[XLEN/2:XLEN-1]
divisor[0:(XLEN/2)-1] <- (RB)[XLEN/2:XLEN-1]
if divisor != 0 then

RT[XLEN/2:XLEN-1] <- dividend / divisor
RT[0:(XLEN/2)-1] <- undefined([0]*(XLEN/2))
overflow <- 0

else
RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

J.48 Divide Word Extended

XO-Form

• divwe RT,RA,RB (OE=0 Rc=0)
• divwe. RT,RA,RB (OE=0 Rc=1)
• divweo RT,RA,RB (OE=1 Rc=0)
• divweo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:XLEN-1] <- (RA)[XLEN/2:XLEN-1] || [0]*(XLEN/2)
divisor[0:XLEN-1] <- EXTS64((RB)[XLEN/2:XLEN-1])
if (((dividend = (0b1 || ([0b0] * (XLEN-1)))) &

(divisor = [1]*XLEN)) |
(divisor = [0]*XLEN)) then
overflow <- 1

else

FIXED POINT ARITHMETIC PSEUDOCODE 365

result <- DIVS(dividend, divisor)
result_half[0:XLEN-1] <- EXTS64(result[XLEN/2:XLEN-1])
if (result_half = result) then

RT[XLEN/2:XLEN-1] <- result[XLEN/2:XLEN-1]
RT[0:(XLEN/2)-1] <- undefined([0]*(XLEN/2))
overflow <- 0

else
overflow <- 1

if overflow = 1 then
RT[0:XLEN-1] <- undefined([0]*XLEN)

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

J.49 Divide Word Extended Unsigned

XO-Form

• divweu RT,RA,RB (OE=0 Rc=0)
• divweu. RT,RA,RB (OE=0 Rc=1)
• divweuo RT,RA,RB (OE=1 Rc=0)
• divweuo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:XLEN-1] <- (RA)[XLEN/2:XLEN-1] || [0]*(XLEN/2)
divisor[0:XLEN-1] <- [0]*(XLEN/2) || (RB)[XLEN/2:XLEN-1]
if (divisor = [0]*XLEN) then

overflow <- 1
else

result <- dividend / divisor
if RA[XLEN/2:XLEN-1] <u RB[XLEN/2:XLEN-1] then

RT[XLEN/2:XLEN-1] <- result[XLEN/2:XLEN-1]
RT[0:(XLEN/2)-1] <- undefined([0]*(XLEN/2))
overflow <- 0

else
overflow <- 1

if overflow = 1 then
RT[0:XLEN-1] <- undefined([0]*XLEN)

Special Registers Altered:

CR0 (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO OV OV32 (if OE=1)

J.50 Modulo Signed Word

X-Form

• modsw RT,RA,RB

Pseudo-code:

dividend[0:(XLEN/2)-1] <- (RA)[XLEN/2:XLEN-1]
divisor[0:(XLEN/2)-1] <- (RB)[XLEN/2:XLEN-1]

FIXED POINT ARITHMETIC PSEUDOCODE 366

if (((dividend = (0b1 || ([0b0] * ((XLEN/2)-1)))) &
(divisor = [1]*(XLEN/2))) |
(divisor = [0]*(XLEN/2))) then

RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

else
RT[0:XLEN-1] <- EXTS64(MODS(dividend, divisor))
RT[0:(XLEN/2)-1] <- undefined(RT[0:(XLEN/2)-1])
overflow <- 0

Special Registers Altered:

None

J.51 Modulo Unsigned Word

X-Form

• moduw RT,RA,RB

Pseudo-code:

dividend[0:(XLEN/2)-1] <- (RA)[XLEN/2:63]
divisor [0:(XLEN/2)-1] <- (RB)[XLEN/2:63]
if divisor = [0]*(XLEN/2) then

RT[0:XLEN-1] <- undefined([0]*64)
overflow <- 1

else
RT[XLEN/2:XLEN-1] <- dividend % divisor
RT[0:(XLEN/2)-1] <- undefined([0]*(XLEN/2))
overflow <- 0

Special Registers Altered:

None

J.52 Deliver A Random Number

X-Form

• darn RT,L3

Pseudo-code:

RT <- random(L3)

Special Registers Altered:

none

J.53 Multiply Low Doubleword

XO-Form

• mulld RT,RA,RB (OE=0 Rc=0)
• mulld. RT,RA,RB (OE=0 Rc=1)
• mulldo RT,RA,RB (OE=1 Rc=0)

FIXED POINT ARITHMETIC PSEUDOCODE 367

• mulldo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

prod[0:(XLEN*2)-1] <- MULS((RA), (RB))
RT <- prod[XLEN:(XLEN*2)-1]
overflow <- ((prod[0:XLEN] != [0]*(XLEN+1)) &

(prod[0:XLEN] != [1]*(XLEN+1)))

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.54 Multiply High Doubleword

XO-Form

• mulhd RT,RA,RB (Rc=0)
• mulhd. RT,RA,RB (Rc=1)

Pseudo-code:

prod[0:(XLEN*2)-1] <- MULS((RA), (RB))
RT <- prod[0:XLEN-1]

Special Registers Altered:

CR0 (if Rc=1)

J.55 Multiply High Doubleword Unsigned

XO-Form

• mulhdu RT,RA,RB (Rc=0)
• mulhdu. RT,RA,RB (Rc=1)

Pseudo-code:

prod[0:(XLEN*2)-1] <- (RA) * (RB)
RT <- prod[0:XLEN-1]

Special Registers Altered:

CR0 (if Rc=1)

J.56 Multiply-Add High Doubleword VA-Form

VA-Form

• maddhd RT,RA,RB,RC

Pseudo-code:

prod[0:(XLEN*2)-1] <- MULS((RA), (RB))
sum[0:(XLEN*2)-1] <- prod + EXTS(RC)[0:XLEN*2]
RT <- sum[0:XLEN-1]

Special Registers Altered:

FIXED POINT ARITHMETIC PSEUDOCODE 368

None

J.57 Multiply-Add High Doubleword Unsigned

VA-Form

• maddhdu RT,RA,RB,RC

Pseudo-code:

prod[0:(XLEN*2)-1] <- (RA) * (RB)
sum[0:(XLEN*2)-1] <- prod + EXTZ(RC)
RT <- sum[0:XLEN-1]

Special Registers Altered:

None

J.58 Multiply-Add Low Doubleword

VA-Form

• maddld RT,RA,RB,RC

Pseudo-code:

prod[0:(XLEN*2)-1] <- MULS((RA), (RB))
sum[0:(XLEN*2)-1] <- prod + EXTS(RC)
RT <- sum[XLEN:(XLEN*2)-1]

Special Registers Altered:

None

J.59 Divide Doubleword

XO-Form

• divd RT,RA,RB (OE=0 Rc=0)
• divd. RT,RA,RB (OE=0 Rc=1)
• divdo RT,RA,RB (OE=1 Rc=0)
• divdo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:XLEN-1] <- (RA)
divisor[0:XLEN-1] <- (RB)
if (((dividend = (0b1 || ([0b0] * (XLEN-1)))) &

(divisor = [1]*XLEN)) |
(divisor = [0]*XLEN)) then
RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

else
RT <- DIVS(dividend, divisor)
overflow <- 0

Special Registers Altered:

FIXED POINT ARITHMETIC PSEUDOCODE 369

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.60 Divide Doubleword Unsigned

XO-Form

• divdu RT,RA,RB (OE=0 Rc=0)
• divdu. RT,RA,RB (OE=0 Rc=1)
• divduo RT,RA,RB (OE=1 Rc=0)
• divduo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:XLEN-1] <- (RA)
divisor[0:XLEN-1] <- (RB)
if (divisor = [0]*XLEN) then

RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

else
RT <- dividend / divisor
overflow <- 0

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.61 Divide Doubleword Extended

XO-Form

• divde RT,RA,RB (OE=0 Rc=0)
• divde. RT,RA,RB (OE=0 Rc=1)
• divdeo RT,RA,RB (OE=1 Rc=0)
• divdeo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:(XLEN*2)-1] <- (RA) || [0]*XLEN
divisor[0:(XLEN*2)-1] <- EXTS128((RB))
if (((dividend = (0b1 || ([0b0] * ((XLEN*2)-1)))) &

(divisor = [1]*(XLEN*2))) |
(divisor = [0]*(XLEN*2))) then
overflow <- 1

else
result <- DIVS(dividend, divisor)
result_half[0:(XLEN*2)-1] <- EXTS128(result[XLEN:(XLEN*2)-1])
if (result_half = result) then

RT <- result[XLEN:(XLEN*2)-1]
overflow <- 0

else
overflow <- 1

if overflow = 1 then
RT[0:XLEN-1] <- undefined([0]*XLEN)

FIXED POINT ARITHMETIC PSEUDOCODE 370

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.62 Divide Doubleword Extended Unsigned

XO-Form

• divdeu RT,RA,RB (OE=0 Rc=0)
• divdeu. RT,RA,RB (OE=0 Rc=1)
• divdeuo RT,RA,RB (OE=1 Rc=0)
• divdeuo. RT,RA,RB (OE=1 Rc=1)

Pseudo-code:

dividend[0:(XLEN*2)-1] <- (RA) || [0]*XLEN
divisor[0:(XLEN*2)-1] <- [0]*XLEN || (RB)
if divisor = [0]*(XLEN*2) then

overflow <- 1
else

result <- dividend / divisor
if (RA) <u (RB) then

RT <- result[XLEN:(XLEN*2)-1]
overflow <- 0

else
overflow <- 1

if overflow = 1 then
RT[0:XLEN-1] <- undefined([0]*XLEN)

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)

J.63 Modulo Signed Doubleword

X-Form

• modsd RT,RA,RB

Pseudo-code:

dividend <- (RA)
divisor <- (RB)
if (((dividend = (0b1 || ([0b0] * (XLEN-1)))) &

(divisor = [1]*XLEN)) |
(divisor = [0]*XLEN)) then
RT[0:63] <- undefined([0]*XLEN)
overflow <- 1

else
RT <- MODS(dividend, divisor)
overflow <- 0

Special Registers Altered:

None

FIXED POINT ARITHMETIC PSEUDOCODE 371

J.64 Modulo Unsigned Doubleword

X-Form

• modud RT,RA,RB

Pseudo-code:

dividend <- (RA)
divisor <- (RB)
if (divisor = [0]*XLEN) then

RT[0:XLEN-1] <- undefined([0]*XLEN)
overflow <- 1

else
RT <- dividend % divisor
overflow <- 0

Special Registers Altered:

None

Fixed Point Load pseudocode

J.65 Load Byte and Zero

D-Form

• lbz RT,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
RT <- ([0] * (XLEN-8)) || MEM(EA, 1)

Special Registers Altered:

None

J.66 Load Byte and Zero Indexed

X-Form

• lbzx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- ([0] * (XLEN-8)) || MEM(EA, 1)

Special Registers Altered:

None

J.67 Load Byte and Zero with Update

D-Form

• lbzu RT,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
RT <- ([0] * (XLEN-8)) || MEM(EA, 1)
RA <- EA

Special Registers Altered:

None

372

FIXED POINT LOAD PSEUDOCODE 373

J.68 Load Byte and Zero with Update Indexed

X-Form

• lbzux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- ([0] * (XLEN-8)) || MEM(EA, 1)
RA <- EA

Special Registers Altered:

None

J.69 Load Halfword and Zero

D-Form

• lhz RT,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
RT <- ([0] * (XLEN-16)) || MEM(EA, 2)

Special Registers Altered:

None

J.70 Load Halfword and Zero Indexed

X-Form

• lhzx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- ([0] * (XLEN-16)) || MEM(EA, 2)

Special Registers Altered:

None

J.71 Load Halfword and Zero with Update

D-Form

• lhzu RT,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
RT <- ([0] * (XLEN-16)) || MEM(EA, 2)
RA <- EA

FIXED POINT LOAD PSEUDOCODE 374

Special Registers Altered:

None

J.72 Load Halfword and Zero with Update Indexed

X-Form

• lhzux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- ([0] * (XLEN-16)) || MEM(EA, 2)
RA <- EA

Special Registers Altered:

None

J.73 Load Halfword Algebraic

D-Form

• lha RT,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
RT <- EXTS(MEM(EA, 2))

Special Registers Altered:

None

J.74 Load Halfword Algebraic Indexed

X-Form

• lhax RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- EXTS(MEM(EA, 2))

Special Registers Altered:

None

J.75 Load Halfword Algebraic with Update

D-Form

• lhau RT,D(RA)

FIXED POINT LOAD PSEUDOCODE 375

Pseudo-code:

EA <- (RA) + EXTS(D)
RT <- EXTS(MEM(EA, 2))
RA <- EA

Special Registers Altered:

None

J.76 Load Halfword Algebraic with Update Indexed

X-Form

• lhaux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- EXTS(MEM(EA, 2))
RA <- EA

Special Registers Altered:

None

J.77 Load Word and Zero

D-Form

• lwz RT,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
RT <- [0] * 32 || MEM(EA, 4)

Special Registers Altered:

None

J.78 Load Word and Zero Indexed

X-Form

• lwzx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- [0] * 32 || MEM(EA, 4)

Special Registers Altered:

None

FIXED POINT LOAD PSEUDOCODE 376

J.79 Load Word and Zero with Update

D-Form

• lwzu RT,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
RT <- [0]*32 || MEM(EA, 4)
RA <- EA

Special Registers Altered:

None

J.80 Load Word and Zero with Update Indexed

X-Form

• lwzux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- [0] * 32 || MEM(EA, 4)
RA <- EA

Special Registers Altered:

None

J.81 Load Word Algebraic

DS-Form

• lwa RT,DS(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(DS || 0b00)
RT <- EXTS(MEM(EA, 4))

Special Registers Altered:

None

J.82 Load Word Algebraic Indexed

X-Form

• lwax RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- EXTS(MEM(EA, 4))

FIXED POINT LOAD PSEUDOCODE 377

Special Registers Altered:

None

J.83 Load Word Algebraic with Update Indexed

X-Form

• lwaux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- EXTS(MEM(EA, 4))
RA <- EA

Special Registers Altered:

None

J.84 Load Doubleword

DS-Form

• ld RT,DS(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(DS || 0b00)
RT <- MEM(EA, 8)

Special Registers Altered:

None

J.85 Load Doubleword Indexed

X-Form

• ldx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
RT <- MEM(EA, 8)

Special Registers Altered:

None

J.86 Load Doubleword with Update Indexed

DS-Form

• ldu RT,DS(RA)

FIXED POINT LOAD PSEUDOCODE 378

Pseudo-code:

EA <- (RA) + EXTS(DS || 0b00)
RT <- MEM(EA, 8)
RA <- EA

Special Registers Altered:

None

J.87 Load Doubleword with Update Indexed

X-Form

• ldux RT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
RT <- MEM(EA, 8)
RA <- EA

Special Registers Altered:

None

J.88 Load Quadword

DQ-Form

• lq RTp,DQ(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(DQ || 0b0000)
RTp <- MEM(EA, 16)

Special Registers Altered:

None

J.89 Load Halfword Byte-Reverse Indexed

X-Form

• lhbrx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
load_data <- MEM(EA, 2)
RT <- [0]*48 || load_data[8:15] || load_data[0:7]

Special Registers Altered:

None

FIXED POINT LOAD PSEUDOCODE 379

J.90 Load Word Byte-Reverse Indexed

X-Form

• lwbrx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
load_data <- MEM(EA, 4)
RT <- ([0] * 32 || load_data[24:31] || load_data[16:23]

|| load_data[8:15] || load_data[0:7])

Special Registers Altered:

None

J.91 Load Doubleword Byte-Reverse Indexed

X-Form

• ldbrx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
load_data <- MEM(EA, 8)
RT <- (load_data[56:63] || load_data[48:55]

|| load_data[40:47] || load_data[32:39]
|| load_data[24:31] || load_data[16:23]
|| load_data[8:15] || load_data[0:7])

Special Registers Altered:

None

J.92 Load Multiple Word

DQ-Form

• lmw RT,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
r <- RT[0:63]
do while r <= 31

GPR(r) <- [0]*32 || MEM(EA, 4)
r <- r + 1
EA <- EA + 4

Special Registers Altered:

None

Fixed Point Logical pseudocode

J.93 AND Immediate

D-Form

• andi. RA,RS,UI

Pseudo-code:

RA <- (RS) & EXTZ(UI)

Special Registers Altered:

CR0

J.94 OR Immediate

D-Form

• ori RA,RS,UI

Pseudo-code:

RA <- (RS) | EXTZ(UI)

Special Registers Altered:

None

J.95 AND Immediate Shifted

D-Form

• andis. RA,RS,UI

Pseudo-code:

RA <- (RS) & EXTZ(UI || [0]*16)

Special Registers Altered:

CR0

380

FIXED POINT LOGICAL PSEUDOCODE 381

J.96 OR Immediate Shifted

D-Form

• oris RA,RS,UI

Pseudo-code:

RA <- (RS) | EXTZ(UI || [0]*16)

Special Registers Altered:

None

J.97 XOR Immediate Shifted

D-Form

• xoris RA,RS,UI

Pseudo-code:

RA <- (RS) ^ EXTZ(UI || [0]*16)

Special Registers Altered:

None

J.98 XOR Immediate

D-Form

• xori RA,RS,UI

Pseudo-code:

RA <- (RS) ^ EXTZ(UI)

Special Registers Altered:

None

J.99 AND

X-Form

• and RA,RS,RB (Rc=0)
• and. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- (RS) & (RB)

Special Registers Altered:

CR0 (if Rc=1)

FIXED POINT LOGICAL PSEUDOCODE 382

J.100 OR

X-Form

• or RA,RS,RB (Rc=0)
• or. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- (RS) | (RB)

Special Registers Altered:

CR0 (if Rc=1)

J.101 XOR

X-Form

• xor RA,RS,RB (Rc=0)
• xor. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- (RS) ^ (RB)

Special Registers Altered:

CR0 (if Rc=1)

J.102 NAND

X-Form

• nand RA,RS,RB (Rc=0)
• nand. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- ¬((RS) & (RB))

Special Registers Altered:

CR0 (if Rc=1)

J.103 NOR

X-Form

• nor RA,RS,RB (Rc=0)
• nor. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- ¬((RS) | (RB))

Special Registers Altered:

CR0 (if Rc=1)

FIXED POINT LOGICAL PSEUDOCODE 383

J.104 Equivalent

X-Form

• eqv RA,RS,RB (Rc=0)
• eqv. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- ¬((RS) ^ (RB))

Special Registers Altered:

CR0 (if Rc=1)

J.105 AND with Complement

X-Form

• andc RA,RS,RB (Rc=0)
• andc. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- (RS) & ¬(RB)

Special Registers Altered:

CR0 (if Rc=1)

J.106 OR with Complement

X-Form

• orc RA,RS,RB (Rc=0)
• orc. RA,RS,RB (Rc=1)

Pseudo-code:

RA <- (RS) | ¬(RB)

Special Registers Altered:

CR0 (if Rc=1)

J.107 Extend Sign Byte

X-Form

• extsb RA,RS (Rc=0)
• extsb. RA,RS (Rc=1)

Pseudo-code:

RA <- EXTSXL(RS, XLEN/8)

Special Registers Altered:

CR0 (if Rc=1)

FIXED POINT LOGICAL PSEUDOCODE 384

J.108 Extend Sign Halfword

X-Form

• extsh RA,RS (Rc=0)
• extsh. RA,RS (Rc=1)

Pseudo-code:

RA <- EXTSXL(RS, XLEN/4)

Special Registers Altered:

CR0 (if Rc=1)

J.109 Count Leading Zeros Word

X-Form

• cntlzw RA,RS (Rc=0)
• cntlzw. RA,RS (Rc=1)

Pseudo-code:

n <- (XLEN/2)
do while n < XLEN

if (RS)[n] = 1 then
leave

n <- n + 1
RA <- n - (XLEN/2)

Special Registers Altered:

CR0 (if Rc=1)

J.110 Count Trailing Zeros Word

X-Form

• cnttzw RA,RS (Rc=0)
• cnttzw. RA,RS (Rc=1)

Pseudo-code:

n <- 0
do while n < XLEN/2

if (RS)[XLEN-1-n] = 0b1 then
leave

n <- n + 1
RA <- EXTZ(n)

Special Registers Altered:

CR0 (if Rc=1)

FIXED POINT LOGICAL PSEUDOCODE 385

J.111 Compare Bytes

X-Form

• cmpb RA,RS,RB

Pseudo-code:

do n = 0 to ((XLEN/8)-1)
if RS[8*n:8* n+7] = (RB)[8*n:8*n+7] then

RA[8*n:8* n+7] <- [1]*8
else

RA[8*n:8* n+7] <- [0]*8

Special Registers Altered:

None

J.112 Population Count Bytes

X-Form

• popcntb RA,RS

Pseudo-code:

do i = 0 to ((XLEN/8)-1)
n <- 0
do j = 0 to 7

if (RS)[(i*8)+j] = 1 then
n <- n+1

RA[(i*8):(i*8)+7] <- n

Special Registers Altered:

None

J.113 Population Count Words

X-Form

• popcntw RA,RS

Pseudo-code:

e <- (XLEN/2)-1
do i = 0 to 1

s <- i*XLEN/2
n <- 0
do j = 0 to e

if (RS)[s+j] = 1 then
n <- n+1

RA[s:s+e] <- n

Special Registers Altered:

None

FIXED POINT LOGICAL PSEUDOCODE 386

J.114 Parity Doubleword

X-Form

• prtyd RA,RS

Pseudo-code:

s <- 0
do i = 0 to ((XLEN/8)-1)

s <- s ^ (RS)[i*8+7]
RA <- [0] * (XLEN-1) || s

Special Registers Altered:

None

J.115 Parity Word

X-Form

• prtyw RA,RS

Pseudo-code:

s <- 0
t <- 0
do i = 0 to ((XLEN/8/2)-1)

s <- s ^ (RS)[i*8+7]
do i = 4 to ((XLEN/8)-1)

t <- t ^ (RS)[i*8+7]
RA[0:(XLEN/2)-1] <- [0]*((XLEN/2)-1) || s
RA[XLEN/2:XLEN-1] <- [0]*((XLEN/2)-1) || t

Special Registers Altered:

None

J.116 Extend Sign Word

X-Form

• extsw RA,RS (Rc=0)
• extsw. RA,RS (Rc=1)

Pseudo-code:

RA <- EXTSXL(RS, XLEN/2)

Special Registers Altered:

CR0 (if Rc=1)

J.117 Population Count Doubleword

X-Form

• popcntd RA,RS

FIXED POINT LOGICAL PSEUDOCODE 387

Pseudo-code:

n <- 0
do i = 0 to (XLEN-1)

if (RS)[i] = 1 then
n <- n+1

RA <- n

Special Registers Altered:

None

J.118 Count Leading Zeros Doubleword

X-Form

• cntlzd RA,RS (Rc=0)
• cntlzd. RA,RS (Rc=1)

Pseudo-code:

n <- 0
do while n < XLEN
if (RS)[n] = 1 then

leave
n <- n + 1

RA <- n

Special Registers Altered:

CR0 (if Rc=1)

J.119 Count Trailing Zeros Doubleword

X-Form

• cnttzd RA,RS (Rc=0)
• cnttzd. RA,RS (Rc=1)

Pseudo-code:

n <- 0
do while n < XLEN

if (RS)[XLEN-1-n] = 0b1 then
leave

n <- n + 1
RA <- EXTZ(n)

Special Registers Altered:

CR0 (if Rc=1)

J.120 Bit Permute Doubleword

X-Form

• bpermd RA,RS,RB

FIXED POINT LOGICAL PSEUDOCODE 388

Pseudo-code:

perm <- [0] * (XLEN/8)
for i = 0 to ((XLEN/8)-1)

index <- (RS)[8*i:8*i+7]
if index <u XLEN then

perm[i] <- (RB)[index]
else

perm[i] <- 0
RA <- [0]*(XLEN*7/8) || perm

Special Registers Altered:

None

Fixed Point Rotate pseudocode

J.121 Rotate Left Word Immediate then AND with Mask

M-Form

• rlwinm RA,RS,SH,MB,ME (Rc=0)
• rlwinm. RA,RS,SH,MB,ME (Rc=1)

Pseudo-code:

n <- SH
r <- ROTL32((RS)[XLEN/2:XLEN-1], n)
m <- MASK32(MB, ME)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.122 Rotate Left Word then AND with Mask

M-Form

• rlwnm RA,RS,RB,MB,ME (Rc=0)
• rlwnm. RA,RS,RB,MB,ME (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL32((RS)[XLEN/2:XLEN-1], n)
m <- MASK32(MB, ME)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.123 Rotate Left Word Immediate then Mask Insert

M-Form

• rlwimi RA,RS,SH,MB,ME (Rc=0)
• rlwimi. RA,RS,SH,MB,ME (Rc=1)

Pseudo-code:

389

FIXED POINT ROTATE PSEUDOCODE 390

n <- SH
r <- ROTL32((RS)[XLEN/2:XLEN-1], n)
m <- MASK32(MB, ME)
RA <- r&m | (RA) & ¬m

Special Registers Altered:

CR0 (if Rc=1)

J.124 Rotate Left Doubleword Immediate then Clear Left

MD-Form

• rldicl RA,RS,sh,mb (Rc=0)
• rldicl. RA,RS,sh,mb (Rc=1)

Pseudo-code:

n <- sh
r <- ROTL64((RS), n)
b <- mb[5] || mb[0:4]
m <- MASK(b, (XLEN-1))
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.125 Rotate Left Doubleword Immediate then Clear Right

MD-Form

• rldicr RA,RS,sh,me (Rc=0)
• rldicr. RA,RS,sh,me (Rc=1)

Pseudo-code:

n <- sh
r <- ROTL64((RS), n)
e <- me[5] || me[0:4]
m <- MASK(0, e)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.126 Rotate Left Doubleword Immediate then Clear

MD-Form

• rldic RA,RS,sh,mb (Rc=0)
• rldic. RA,RS,sh,mb (Rc=1)

Pseudo-code:

FIXED POINT ROTATE PSEUDOCODE 391

n <- sh
r <- ROTL64((RS), n)
b <- mb[5] || mb[0:4]
m <- MASK(b, ¬n)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.127 Rotate Left Doubleword then Clear Left

MDS-Form

• rldcl RA,RS,RB,mb (Rc=0)
• rldcl. RA,RS,RB,mb (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL64((RS), n)
b <- mb[5] || mb[0:4]
m <- MASK(b, (XLEN-1))
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.128 Rotate Left Doubleword then Clear Right

MDS-Form

• rldcr RA,RS,RB,me (Rc=0)
• rldcr. RA,RS,RB,me (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL64((RS), n)
e <- me[5] || me[0:4]
m <- MASK(0, e)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.129 Rotate Left Doubleword Immediate then Mask Insert

MD-Form

• rldimi RA,RS,sh,mb (Rc=0)
• rldimi. RA,RS,sh,mb (Rc=1)

Pseudo-code:

FIXED POINT ROTATE PSEUDOCODE 392

n <- sh
r <- ROTL64((RS), n)
b <- mb[5] || mb[0:4]
m <- MASK(b, ¬n)
RA <- r&m | (RA)& ¬m

Special Registers Altered:

CR0 (if Rc=1)

J.130 Shift Left Word

X-Form

• slw RA,RS,RB (Rc=0)
• slw. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL32((RS)[XLEN/2:XLEN-1], n)
if (RB)[XLEN-6] = 0 then

m <- MASK32(0, ((XLEN/2)-1-n))
else m <- [0]*XLEN
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.131 Shift Right Word

X-Form

• srw RA,RS,RB (Rc=0)
• srw. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL32((RS)[XLEN/2:XLEN-1], XLEN-n)
if (RB)[XLEN-6] = 0 then

m <- MASK32(n, ((XLEN/2)-1))
else m <- [0]*XLEN
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.132 Shift Right Algebraic Word Immediate

X-Form

• srawi RA,RS,SH (Rc=0)
• srawi. RA,RS,SH (Rc=1)

FIXED POINT ROTATE PSEUDOCODE 393

Pseudo-code:

n <- SH
r <- ROTL32((RS)[XLEN/2:XLEN-1], 64-n)
m <- MASK32(n, ((XLEN/2)-1))
s <- (RS)[XLEN/2]
RA <- r&m | ([s]*XLEN)& ¬m
carry <- s & ((r&¬m)[XLEN/2:XLEN-1] != 0)
CA <- carry
CA32 <- carry

Special Registers Altered:

CA CA32
CR0 (if Rc=1)

J.133 Shift Right Algebraic Word

X-Form

• sraw RA,RS,RB (Rc=0)
• sraw. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-5:XLEN-1]
r <- ROTL32((RS)[XLEN/2:XLEN-1], XLEN-n)
if (RB)[XLEN-6] = 0 then

m <- MASK32(n, ((XLEN/2)-1))
else m <- [0]*XLEN
s <- (RS)[XLEN/2]
RA <- r&m | ([s]*XLEN)& ¬m
carry <- s & ((r&¬m)[XLEN/2:XLEN-1] != 0)
CA <- carry
CA32 <- carry

Special Registers Altered:

CA CA32
CR0 (if Rc=1)

J.134 Shift Left Doubleword

X-Form

• sld RA,RS,RB (Rc=0)
• sld. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-6:XLEN-1]
r <- ROTL64((RS), n)
if (RB)[XLEN-7] = 0 then

m <- MASK(0, XLEN-1-n)
else m <- [0]*XLEN
RA <- r & m

Special Registers Altered:

FIXED POINT ROTATE PSEUDOCODE 394

CR0 (if Rc=1)

J.135 Shift Right Doubleword

X-Form

• srd RA,RS,RB (Rc=0)
• srd. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-6:XLEN-1]
r <- ROTL64((RS), XLEN-n)
if (RB)[XLEN-7] = 0 then

m <- MASK(n, (XLEN-1))
else m <- [0]*XLEN
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

J.136 Shift Right Algebraic Doubleword Immediate

XS-Form

• sradi RA,RS,sh (Rc=0)
• sradi. RA,RS,sh (Rc=1)

Pseudo-code:

n <- sh
r <- ROTL64((RS), XLEN-n)
m <- MASK(n, (XLEN-1))
s <- (RS)[0]
RA <- r&m | ([s]*XLEN)& ¬m
carry <- s & ((r& ¬m) != 0)
CA <- carry
CA32 <- carry

Special Registers Altered:

CA CA32
CR0 (if Rc=1)

J.137 Shift Right Algebraic Doubleword

X-Form

• srad RA,RS,RB (Rc=0)
• srad. RA,RS,RB (Rc=1)

Pseudo-code:

n <- (RB)[XLEN-6:XLEN-1]
r <- ROTL64((RS), XLEN-n)
if (RB)[XLEN-7] = 0 then

FIXED POINT ROTATE PSEUDOCODE 395

m <- MASK(n, (XLEN-1))
else m <- [0]*XLEN
s <- (RS)[0]
RA <- r&m | ([s]*XLEN)& ¬m
carry <- s & ((r&¬m) != 0)
CA <- carry
CA32 <- carry

Special Registers Altered:

CA CA32
CR0 (if Rc=1)

J.138 Extend-Sign Word and Shift Left Immediate

XS-Form

• extswsli RA,RS,sh (Rc=0)
• extswsli. RA,RS,sh (Rc=1)

Pseudo-code:

n <- sh
r <- ROTL64(EXTS64(RS[XLEN/2:XLEN-1]), n)
m <- MASK(0, XLEN-1-n)
RA <- r & m

Special Registers Altered:

CR0 (if Rc=1)

Fixed Point Store pseudocode

J.139 Store Byte

D-Form

• stb RS,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
MEM(EA, 1) <- (RS)[XLEN-8:XLEN-1]

Special Registers Altered:

None

J.140 Store Byte Indexed

X-Form

• stbx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 1) <- (RS)[XLEN-8:XLEN-1]

Special Registers Altered:

None

J.141 Store Byte with Update

D-Form

• stbu RS,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
MEM(EA, 1) <- (RS)[XLEN-8:XLEN-1]
RA <- EA

Special Registers Altered:

None

396

FIXED POINT STORE PSEUDOCODE 397

J.142 Store Byte with Update Indexed

X-Form

• stbux RS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 1) <- (RS)[XLEN-8:XLEN-1]
RA <- EA

Special Registers Altered:

None

J.143 Store Halfword

D-Form

• sth RS,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
MEM(EA, 2) <- (RS)[XLEN-16:XLEN-1]

Special Registers Altered:

None

J.144 Store Halfword Indexed

X-Form

• sthx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 2) <- (RS)[XLEN-16:XLEN-1]

Special Registers Altered:

None

J.145 Store Halfword with Update

D-Form

• sthu RS,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
MEM(EA, 2) <- (RS)[XLEN-16:XLEN-1]
RA <- EA

FIXED POINT STORE PSEUDOCODE 398

Special Registers Altered:

None

J.146 Store Halfword with Update Indexed

X-Form

• sthux RS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 2) <- (RS)[XLEN-16:XLEN-1]
RA <- EA

Special Registers Altered:

None

J.147 Store Word

D-Form

• stw RS,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
MEM(EA, 4) <- (RS)[XLEN-32:XLEN-1]

Special Registers Altered:

None

J.148 Store Word Indexed

X-Form

• stwx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 4) <- (RS)[XLEN-32:XLEN-1]

Special Registers Altered:

None

J.149 Store Word with Update

D-Form

• stwu RS,D(RA)

FIXED POINT STORE PSEUDOCODE 399

Pseudo-code:

EA <- (RA) + EXTS(D)
MEM(EA, 4) <- (RS)[XLEN-32:XLEN-1]
RA <- EA

Special Registers Altered:

None

J.150 Store Word with Update Indexed

X-Form

• stwux RS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 4) <- (RS)[XLEN-32:XLEN-1]
RA <- EA

Special Registers Altered:

None

J.151 Store Doubleword

DS-Form

• std RS,DS(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(DS || 0b00)
MEM(EA, 8) <- (RS)

Special Registers Altered:

None

J.152 Store Doubleword Indexed

X-Form

• stdx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 8) <- (RS)

Special Registers Altered:

None

FIXED POINT STORE PSEUDOCODE 400

J.153 Store Doubleword with Update

DS-Form

• stdu RS,DS(RA)

Pseudo-code:

EA <- (RA) + EXTS(DS || 0b00)
MEM(EA, 8) <- (RS)
RA <- EA

Special Registers Altered:

None

J.154 Store Doubleword with Update Indexed

X-Form

• stdux RS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 8) <- (RS)
RA <- EA

Special Registers Altered:

None

J.155 Store Quadword

DS-Form

• stq RSp,DS(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(DS || 0b00)
MEM(EA, 16) <- RSp

Special Registers Altered:

None

J.156 Store Halfword Byte-Reverse Indexed

X-Form

• sthbrx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 2) <- (RS) [56:63] || (RS)[48:55]

FIXED POINT STORE PSEUDOCODE 401

Special Registers Altered:

None

J.157 Store Word Byte-Reverse Indexed

X-Form

• stwbrx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 4) <- ((RS)[56:63] || (RS)[48:55] || (RS)[40:47]

||(RS)[32:39])

Special Registers Altered:

None

J.158 Store Doubleword Byte-Reverse Indexed

X-Form

• stdbrx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 8) <- ((RS) [56:63] || (RS)[48:55]

|| (RS)[40:47] || (RS)[32:39]
|| (RS)[24:31] || (RS)[16:23]
|| (RS)[8:15] || (RS)[0:7])

Special Registers Altered:

None

J.159 Store Multiple Word

D-Form

• stmw RS,D(RA)

Pseudo-code:

b <- (RA|0)
EA <- b + EXTS(D)
r <- RS[0:63]
do while r <= 31

MEM(EA, 4) <- GPR(r)[32:63]
r <- r + 1
EA <- EA + 4

Special Registers Altered:

None

Fixed Point Trap pseudocode

J.160 Trap Word Immediate

D-Form

• twi TO,RA,SI

Pseudo-code:

a <- EXTS((RA)[XLEN/2:XLEN-1])
if (a < EXTS(SI)) & TO[0] then TRAP
if (a > EXTS(SI)) & TO[1] then TRAP
if (a = EXTS(SI)) & TO[2] then TRAP
if (a <u EXTS(SI)) & TO[3] then TRAP
if (a >u EXTS(SI)) & TO[4] then TRAP

Special Registers Altered:

None

J.161 Trap Word

X-Form

• tw TO,RA,RB

Pseudo-code:

a <- EXTS((RA)[XLEN/2:XLEN-1])
b <- EXTS((RB)[XLEN/2:XLEN-1])
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <u b) & TO[3] then TRAP
if (a >u b) & TO[4] then TRAP

Special Registers Altered:

None

J.162 Trap Doubleword Immediate

D-Form

• tdi TO,RA,SI

402

FIXED POINT TRAP PSEUDOCODE 403

Pseudo-code:

a <- (RA)
b <- EXTS(SI)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <u b) & TO[3] then TRAP
if (a >u b) & TO[4] then TRAP

Special Registers Altered:

None

J.163 Trap Doubleword

X-Form

• td TO,RA,RB

Pseudo-code:

a <- (RA)
b <- (RB)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <u b) & TO[3] then TRAP
if (a >u b) & TO[4] then TRAP

Special Registers Altered:

None

J.164 Integer Select

A-Form

• isel RT,RA,RB,BC

Pseudo-code:

if CR[BC+32]=1 then RT <- (RA|0)
else RT <- (RB)

Special Registers Altered:

None

Special Purpose Register pseudocode

J.165 Move To Special Purpose Register

XFX-Form

• mtspr spr,RS

Pseudo-code:

n <- spr
switch (n)
case(13): see(Book_III_p974)
case(808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
SPR(n) <- (RS)

else
SPR(n) <- (RS) [32:63]

Special Registers Altered:

See spec 3.3.17

J.166 Move From Special Purpose Register

XFX-Form

• mfspr RT,spr

Pseudo-code:

n <- spr
switch (n)
case(129): see(Book_III_p975)
case(808, 809, 810, 811):
default:
if length(SPR(n)) = 64 then
RT <- SPR(n)

else
RT <- [0]*32 || SPR(n)

Special Registers Altered:

None

404

SPECIAL PURPOSE REGISTER PSEUDOCODE 405

J.167 Move to CR from XER Extended

X-Form

• mcrxrx BF

Pseudo-code:

CR[4*BF+32:4*BF+35] <- XER[OV] || XER[OV32] || XER[CA] || XER[CA32]

Special Registers Altered:

CR field BF

J.168 Move To One Condition Register Field

XFX-Form

• mtocrf FXM,RS

Pseudo-code:

n <- 7
do i = 7 to 0
if FXM[i] = 1 then
n <- i

CR[4*n+32:4*n+35] <- (RS)[4*n+32:4*n+35]

Special Registers Altered:

CR field selected by FXM

J.169 Move To Condition Register Fields

XFX-Form

• mtcrf FXM,RS

Pseudo-code:

do n = 0 to 7
if FXM[n] = 1 then
CR[4*n+32:4*n+35] <- (RS)[4*n+32:4*n+35]

Special Registers Altered:

CR fields selected by mask

J.170 Move From One Condition Register Field

XFX-Form

• mfocrf RT,FXM

Pseudo-code:

SPECIAL PURPOSE REGISTER PSEUDOCODE 406

done <- 0
RT <- [0]*64
do n = 0 to 7
if (done = 0) & (FXM[n] = 1) then
RT[4*n+32:4*n+35] <- CR[4*n+32:4*n+35]
done <- 1

Special Registers Altered:

None

J.171 Move From Condition Register

XFX-Form

• mfcr RT

Pseudo-code:

RT <- [0]*32 || CR

Special Registers Altered:

None

J.172 Set Boolean

X-Form

• setb RT,BFA

Pseudo-code:

if CR[4*BFA+32] = 1 then
RT <- 0xFFFF_FFFF_FFFF_FFFF

else if CR[4*BFA+33]=1 then
RT <- 0x0000_0000_0000_0001

else
RT <- 0x0000_0000_0000_0000

Special Registers Altered:

None

J.173 Move To Machine State Register

X-Form

• mtmsr RS,L1

Pseudo-code:

if L1 = 0 then
MSR[48] <- (RS)[48] | (RS)[49]
MSR[58] <- (RS)[58] | (RS)[49]
MSR[59] <- (RS)[59] | (RS)[49]
MSR[32:40] <- (RS)[32:40]
MSR[42:47] <- (RS)[42:47]

SPECIAL PURPOSE REGISTER PSEUDOCODE 407

MSR[49:50] <- (RS)[49:50]
MSR[52:57] <- (RS)[52:57]
MSR[60:62] <- (RS)[60:62]

else
MSR[48] <- (RS)[48]
MSR[62] <- (RS)[62]

Special Registers Altered:

MSR

J.174 Move To Machine State Register

X-Form

• mtmsrd RS,L1

Pseudo-code:

if L1 = 0 then
if (MSR[29:31] != 0b010) | ((RS)[29:31] != 0b000) then

MSR[29:31] <- (RS)[29:31]
MSR[48] <- (RS)[48] | (RS)[49]
MSR[58] <- (RS)[58] | (RS)[49]
MSR[59] <- (RS)[59] | (RS)[49]
MSR[0:2] <- (RS)[0:2]
MSR[4:28] <- (RS)[4:28]
MSR[32:40] <- (RS)[32:40]
MSR[42:47] <- (RS)[42:47]
MSR[49:50] <- (RS)[49:50]
MSR[52:57] <- (RS)[52:57]
MSR[60:62] <- (RS)[60:62]

else
MSR[48] <- (RS)[48]
MSR[62] <- (RS)[62]

Special Registers Altered:

MSR

J.175 Move From Machine State Register

X-Form

• mfmsr RT

Pseudo-code:

RT <- MSR

Special Registers Altered:

None

J.176 Data Cache Block set to Zero

X-Form

SPECIAL PURPOSE REGISTER PSEUDOCODE 408

• dcbz RA,RB

Pseudo-code:

if RA = 0 then b <- 0
else b <-(RA)
EA <- b + (RB)

Special Registers Altered:

None

J.177 TLB Invalidate Entry

X-Form

• tlbie RB,RS,RIC,PRS,R

Pseudo-code:

IS <- (RB) [52:53]

Special Registers Altered:

None

String Load/Store pseudocode

J.178 Load String Word Immediate

X-Form

• lswi RT,RA,NB

Pseudo-code:

EA <- (RA|0)
if NB = 0 then n <- 32
else n <- NB
r <- RT - 1
i <- 32
do while n > 0

if i = 32 then
r <- (r + 1) % 32
GPR(r) <- 0

GPR(r)[i:i+7] <- MEM(EA, 1)
i <- i + 8
if i = 64 then i <- 32
EA <- EA + 1
n <- n - 1

Special Registers Altered:

None

J.179 Load String Word Indexed

X-Form

• lswx RT,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
n <- XER[57:63]
r <- RT - 1
i <- 32
RT <- undefined([0]*64)
do while n > 0

if i = 32 then
r <- (r + 1) % 32
GPR(r) <- 0

409

STRING LOAD/STORE PSEUDOCODE 410

GPR(r)[i:i+7] <- MEM(EA, 1)
i <- i + 8
if i = 64 then i <- 32
EA <- EA + 1
n <- n - 1

Special Registers Altered:

None

J.180 Store String Word Immediate

X-Form

• stswi RS,RA,NB

Pseudo-code:

EA <- (RA|0)
if NB = 0 then n <- 32
else n <- NB
r <- RS - 1
i <- 32
do while n > 0
if i = 32 then r <- (r + 1) % 32
MEM(EA, 1) <- GPR(r)[i:i+7]
i <- i + 8
if i = 64 then i <- 32
EA <- EA + 1
n <- n - 1

Special Registers Altered:

None

J.181 Store String Word Indexed

X-Form

• stswx RS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
n <- XER[57:63]
r <- RS - 1
i <- 32
do while n > 0
if i = 32 then r <- (r + 1) % 32
MEM(EA, 1) <- GPR(r)[i:i+7]
i <- i + 8
if i = 64 then i <- 32
EA <- EA + 1
n <- n - 1

Special Registers Altered:

STRING LOAD/STORE PSEUDOCODE 411

None

System Call pseudocode

J.182 System Call

SC-Form

• sc LEV

Pseudo-code:

SRR0 <-iea CIA + 4
SRR1[33:36] <- 0
SRR1[42:47] <- 0
SRR1[0:32] <- MSR[0:32]
SRR1[37:41] <- MSR[37:41]
SRR1[48:63] <- MSR[48:63]
MSR <- new_value
NIA <- 0x0000_0000_0000_0C00

Special Registers Altered:

SRR0 SRR1 MSR

J.183 System Call Vectored

SC-Form

• scv LEV

Pseudo-code:

LR <- CIA + 4
SRR1[33:36] <- undefined([0]*4)
SRR1[42:47] <- undefined([0]*6)
SRR1[0:32] <- MSR[0:32]
SRR1[37:41] <- MSR[37:41]
SRR1[48:63] <- MSR[48:63]
MSR <- new_value
NIA <- vectored

Special Registers Altered:

LR CTR MSR

412

SYSTEM CALL PSEUDOCODE 413

J.184 Return From System Call Vectored

XL-Form

• rfscv

Pseudo-code:

if (MSR[29:31] != 0b010) | (CTR[29:31] != 0b000) then
MSR[29:31] <- CTR[29:31]

MSR[48] <- CTR[49]
MSR[58] <- CTR[49]
MSR[59] <- CTR[49]
MSR[0:2] <- CTR[0:2]
MSR[4:28] <- CTR[4:28]
MSR[32] <- CTR[32]
MSR[37:41] <- CTR[37:41]
MSR[49:50] <- CTR[49:50]
MSR[52:57] <- CTR[52:57]
MSR[60:63] <- CTR[60:63]
NIA <-iea LR[0:61] || 0b00

Special Registers Altered:

MSR

J.185 Return From Interrupt Doubleword

XL-Form

• rfid

Pseudo-code:

MSR[51] <- (MSR[3] & SRR1[51]) | ((¬MSR[3] & MSR[51]))
MSR[3] <- (MSR[3] & SRR1[3])
if (MSR[29:31] != 0b010) | (SRR1[29:31] != 0b000) then

MSR[29:31] <- SRR1[29:31]
MSR[48] <- SRR1[48] | SRR1[49]
MSR[58] <- SRR1[58] | SRR1[49]
MSR[59] <- SRR1[59] | SRR1[49]
MSR[0:2] <- SRR1[0:2]
MSR[4:28] <- SRR1[4:28]
MSR[32] <- SRR1[32]
MSR[37:41] <- SRR1[37:41]
MSR[49:50] <- SRR1[49:50]
MSR[52:57] <- SRR1[52:57]
MSR[60:63] <- SRR1[60:63]
NIA <-iea SRR0[0:61] || 0b00

Special Registers Altered:

MSR

J.186 Hypervisor Return From Interrupt Doubleword

XL-Form

SYSTEM CALL PSEUDOCODE 414

• hrfid

Pseudo-code:

if (MSR[29:31] != 0b010) | (HSRR1[29:31] != 0b000) then
MSR[29:31] <- HSRR1[29:31]

MSR[48] <- HSRR1[48] | HSRR1[49]
MSR[58] <- HSRR1[58] | HSRR1[49]
MSR[59] <- HSRR1[59] | HSRR1[49]
MSR[0:28] <- HSRR1[0:28]
MSR[32] <- HSRR1[32]
MSR[37:41] <- HSRR1[37:41]
MSR[49:57] <- HSRR1[49:57]
MSR[60:63] <- HSRR1[60:63]
NIA <-iea HSRR0[0:61] || 0b00

Special Registers Altered:

MSR

Floating Point Load pseudocode

J.187 Load Floating-Point Single

D-Form

• lfs FRT,D(RA)

Pseudo-code:

EA <- (RA|0) + EXTS(D)
FRT <- DOUBLE(MEM(EA, 4))

Special Registers Altered:

None

J.188 Load Floating-Point Single Indexed

X-Form

• lfsx FRT,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
FRT <- DOUBLE(MEM(EA, 4))

Special Registers Altered:

None

J.189 Load Floating-Point Single with Update

D-Form

• lfsu FRT,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
FRT <- DOUBLE(MEM(EA, 4))
RA <- EA

Special Registers Altered:

None

415

FLOATING POINT LOAD PSEUDOCODE 416

J.190 Load Floating-Point Single with Update Indexed

X-Form

• lfsux FRT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
FRT <- DOUBLE(MEM(EA, 4))
RA <- EA

Special Registers Altered:

None

J.191 Load Floating-Point Double

D-Form

• lfd FRT,D(RA)

Pseudo-code:

EA <- (RA|0) + EXTS(D)
FRT <- MEM(EA, 8)

Special Registers Altered:

None

J.192 Load Floating-Point Double Indexed

X-Form

• lfdx FRT,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
FRT <- MEM(EA, 8)

Special Registers Altered:

None

J.193 Load Floating-Point Double with Update

D-Form

• lfdu FRT,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
FRT <- MEM(EA, 8)
RA <- EA

Special Registers Altered:

FLOATING POINT LOAD PSEUDOCODE 417

None

J.194 Load Floating-Point Double with Update Indexed

X-Form

• lfdux FRT,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
FRT <- MEM(EA, 8)
RA <- EA

Special Registers Altered:

None

J.195 Load Floating-Point as Integer Word Algebraic Indexed

X-Form

• lfiwax FRT,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
FRT <- EXTS(MEM(EA, 4))

Special Registers Altered:

None

J.196 Load Floating-Point as Integer Word Zero Indexed

X-Form

• lfiwzx FRT,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
FRT <- [0]*32 || MEM(EA, 4)

Special Registers Altered:

None

Floating Point Store pseudocode

J.197 Store Floating-Point Single

D-Form

• stfs FRS,D(RA)

Pseudo-code:

EA <- (RA|0) + EXTS(D)
MEM(EA, 4)<- SINGLE((FRS))

Special Registers Altered:

None

J.198 Store Floating-Point Single Indexed

X-Form

• stfsx FRS,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
MEM(EA, 4)<- SINGLE((FRS))

Special Registers Altered:

None

J.199 Store Floating-Point Single with Update

D-Form

• stfsu FRS,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
MEM(EA, 4)<- SINGLE((FRS))
RA <- EA

Special Registers Altered:

None

418

FLOATING POINT STORE PSEUDOCODE 419

J.200 Store Floating-Point Single with Update Indexed

X-Form

• stfsux FRS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 4)<- SINGLE((FRS))
RA <- EA

Special Registers Altered:

None

J.201 Store Floating-Point Double

D-Form

• stfd FRS,D(RA)

Pseudo-code:

EA <- (RA|0) + EXTS(D)
MEM(EA, 8)<- (FRS)

Special Registers Altered:

None

J.202 Store Floating-Point Double Indexed

X-Form

• stfdx FRS,RA,RB

Pseudo-code:

EA <- (RA|0) + (RB)
MEM(EA, 8)<- (FRS)

Special Registers Altered:

None

J.203 Store Floating-Point Double with Update

D-Form

• stfdu FRS,D(RA)

Pseudo-code:

EA <- (RA) + EXTS(D)
MEM(EA, 8)<- (FRS)
RA <- EA

Special Registers Altered:

FLOATING POINT STORE PSEUDOCODE 420

None

J.204 Store Floating-Point Double with Update Indexed

X-Form

• stfdux FRS,RA,RB

Pseudo-code:

EA <- (RA) + (RB)
MEM(EA, 8)<- (FRS)
RA <- EA

Special Registers Altered:

None

J.205 Store Floating-Point as Integer Word Indexed

X-Form

• stfiwx FRS,RA,RB

Pseudo-code:

b <- (RA|0)
EA <- b + (RB)
MEM(EA, 8)<- (FRS)[32:63]

Special Registers Altered:

None

Floating Point Move pseudocode

J.206 Floating Move Register

X-Form

• fmr FRT,FRB (Rc=0)
• fmr. FRT,FRB (Rc=1)

Pseudo-code:

FRT <- FRB[0:63]

Special Registers Altered:

CR1 (if Rc=1)

J.207 Floating Absolute Value Register

X-Form

• fabs FRT,FRB (Rc=0)
• fabs. FRT,FRB (Rc=1)

Pseudo-code:

FRT <- 0b0 || FRB[1:63]

Special Registers Altered:

CR1 (if Rc=1)

J.208 Floating Negative Absolute Value Register

X-Form

• fnabs FRT,FRB (Rc=0)
• fnabs. FRT,FRB (Rc=1)

Pseudo-code:

FRT <- 0b1 || FRB[1:63]

Special Registers Altered:

CR1 (if Rc=1)

421

FLOATING POINT MOVE PSEUDOCODE 422

J.209 Floating Negate Register

X-Form

• fneg FRT,FRB (Rc=0)
• fneg. FRT,FRB (Rc=1)

Pseudo-code:

FRT <- ¬FRB[0] || FRB[1:63]

Special Registers Altered:

CR1 (if Rc=1)

J.210 Floating Copy Sign Register

X-Form

• fcpsgn FRT,FRA,FRB (Rc=0)
• fcpsgn. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FRA[0] || FRB[1:63]

Special Registers Altered:

CR1 (if Rc=1)

J.211 [DRAFT] Floating Move To GPR

X-Form

• fmvtg RT,FRB (Rc=0)
• fmvtg. RT,FRB (Rc=1)

Pseudo-code:

RT <- (FRB)

Special Registers Altered:

CR0 (if Rc=1)

J.212 [DRAFT] Floating Move To GPR Single

X-Form

• fmvtgs RT,FRB (Rc=0)
• fmvtgs. RT,FRB (Rc=1)

Pseudo-code:

RT <- [0] * (XLEN/2) || SINGLE((FRB)) # SINGLE since that's what stfs uses

Special Registers Altered:

CR0 (if Rc=1)

FLOATING POINT MOVE PSEUDOCODE 423

J.213 [DRAFT] Floating Move From GPR

X-Form

• fmvfg FRT,RB (Rc=0)
• fmvfg. FRT,RB (Rc=1)

Pseudo-code:

FRT <- (RB)

Special Registers Altered:

CR1 (if Rc=1)

J.214 [DRAFT] Floating Move From GPR Single

X-Form

• fmvfgs FRT,RB (Rc=0)
• fmvfgs. FRT,RB (Rc=1)

Pseudo-code:

FRT <- DOUBLE((RB)[XLEN/2:XLEN-1]) # DOUBLE since that's what lfs uses

Special Registers Altered:

CR1 (if Rc=1)

Floating Point Arithmetic pseudocode

J.215 Floating Add [Single]

A-Form

• fadds FRT,FRA,FRB (Rc=0)
• fadds. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPADD32(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.216 Floating Add [Double]

A-Form

• fadd FRT,FRA,FRB (Rc=0)
• fadd. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPADD64(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.217 Floating Subtract [Single]

A-Form

• fsubs FRT,FRA,FRB (Rc=0)
• fsubs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPSUB32(FRA, FRB)

424

FLOATING POINT ARITHMETIC PSEUDOCODE 425

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.218 Floating Subtract [Double]

A-Form

• fsub FRT,FRA,FRB (Rc=0)
• fsub. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPSUB64(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.219 Floating Multiply [Single]

A-Form

• fmuls FRT,FRA,FRC (Rc=0)
• fmuls. FRT,FRA,FRC (Rc=1)

Pseudo-code:

FRT <- FPMUL32(FRA, FRC)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.220 Floating Multiply [Double]

A-Form

• fmul FRT,FRA,FRC (Rc=0)
• fmul. FRT,FRA,FRC (Rc=1)

Pseudo-code:

FRT <- FPMUL64(FRA, FRC)

Special Registers Altered:

FLOATING POINT ARITHMETIC PSEUDOCODE 426

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.221 Floating Divide [Single]

A-Form

• fdivs FRT,FRA,FRB (Rc=0)
• fdivs. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPDIV32(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.222 Floating Divide [Double]

A-Form

• fdiv FRT,FRA,FRB (Rc=0)
• fdiv. FRT,FRA,FRB (Rc=1)

Pseudo-code:

FRT <- FPDIV64(FRA, FRB)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

J.223 Floating Multiply-Add [Single]

A-Form

• fmadds FRT,FRA,FRC,FRB (Rc=0)
• fmadds. FRT,FRA,FRC,FRB (Rc=1)

Pseudo-code:

FRT <- FPMULADD32(FRA, FRC, FRB, 1, 1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

FLOATING POINT ARITHMETIC PSEUDOCODE 427

J.224 Floating Multiply-Sub [Single]

A-Form

• fmsubs FRT,FRA,FRC,FRB (Rc=0)
• fmsubs. FRT,FRA,FRC,FRB (Rc=1)

Pseudo-code:

FRT <- FPMULADD32(FRA, FRC, FRB, 1, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

J.225 Floating Negative Multiply-Add [Single]

A-Form

• fnmadds FRT,FRA,FRC,FRB (Rc=0)
• fnmadds. FRT,FRA,FRC,FRB (Rc=1)

Pseudo-code:

FRT <- FPMULADD32(FRA, FRC, FRB, -1, -1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

J.226 Floating Negative Multiply-Sub [Single]

A-Form

• fnmsubs FRT,FRA,FRC,FRB (Rc=0)
• fnmsubs. FRT,FRA,FRC,FRB (Rc=1)

Pseudo-code:

FRT <- FPMULADD32(FRA, FRC, FRB, -1, 1)

Special Registers Altered:

FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Floating Point Integer Conversion
pseudocode

J.227 Floating Convert with round Signed Doubleword to Single-
Precision format

X-Form

• fcfids FRT,FRB (Rc=0)
• fcfids. FRT,FRB (Rc=1)

Pseudo-code:

FRT <- INT2FP(FRB, 'sint2single')

Special Registers Altered:

FPRF FR FI
FX XX
CR1 (if Rc=1)

J.228 [DRAFT] Floating Convert From Integer In GPR

X-Form

• fcvtfg FRT,RB,IT (Rc=0)
• fcvtfg. FRT,RB,IT (Rc=1)

Pseudo-code:

if IT[0] = 0 then # 32-bit int -> 64-bit float
rounding never necessary, so don't touch FPSCR
based off xvcvsxwdp
if IT = 0 then # Signed 32-bit

src <- bfp_CONVERT_FROM_SI32((RB)[32:63])
else # IT = 1 -- Unsigned 32-bit

src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
FRT <- bfp64_CONVERT_FROM_BFP(src)

else
rounding may be necessary. based off xscvuxdsp
reset_xflags()
switch(IT)

case(0): # Signed 32-bit
src <- bfp_CONVERT_FROM_SI32((RB)[32:63])

case(1): # Unsigned 32-bit

428

FLOATING POINT INTEGER CONVERSION PSEUDOCODE 429

src <- bfp_CONVERT_FROM_UI32((RB)[32:63])
case(2): # Signed 64-bit

src <- bfp_CONVERT_FROM_SI64((RB))
default: # Unsigned 64-bit

src <- bfp_CONVERT_FROM_UI64((RB))
rnd <- bfp_ROUND_TO_BFP64(FPSCR[RN], src)
result <- bfp64_CONVERT_FROM_BFP(rnd)
cls <- fprf_CLASS_BFP64(result)
if xx_flag = 1 then SetFX(FPSCR[XX])
FRT <- result
FPSCR[FPRF] <- cls
FPSCR[FR] <- inc_flag
FPSCR[FI] <- xx_flag

Special Registers Altered:

CR1 (if Rc=1)
FPRF FR FI FX XX (if IT[0]=1)

J.229 [DRAFT] Floating Convert From Integer In GPR Single

X-Form

• fcvtfgs FRT,RB,IT (Rc=0)
• fcvtfgs. FRT,RB,IT (Rc=1)

Pseudo-code:

rounding may be necessary. based off xscvuxdsp
reset_xflags()
switch(IT)

case(0): # Signed 32-bit
src <- bfp_CONVERT_FROM_SI32((RB)[32:63])

case(1): # Unsigned 32-bit
src <- bfp_CONVERT_FROM_UI32((RB)[32:63])

case(2): # Signed 64-bit
src <- bfp_CONVERT_FROM_SI64((RB))

default: # Unsigned 64-bit
src <- bfp_CONVERT_FROM_UI64((RB))

rnd <- bfp_ROUND_TO_BFP32(FPSCR[RN], src)
result32 <- bfp32_CONVERT_FROM_BFP(rnd)
cls <- fprf_CLASS_BFP32(result32)
result <- DOUBLE(result32)
if xx_flag = 1 then SetFX(FPSCR[XX])
FRT <- result
FPSCR[FPRF] <- cls
FPSCR[FR] <- inc_flag
FPSCR[FI] <- xx_flag

Special Registers Altered:

CR1 (if Rc=1)
FPRF FR FI FX XX

FLOATING POINT INTEGER CONVERSION PSEUDOCODE 430

J.230 [DRAFT] Floating Convert To Integer In GPR

XO-Form

• fcvttg RT,FRB,CVM,IT (OE=0 Rc=0)
• fcvttg. RT,FRB,CVM,IT (OE=0 Rc=1)
• fcvttgo RT,FRB,CVM,IT (OE=1 Rc=0)
• fcvttgo. RT,FRB,CVM,IT (OE=1 Rc=1)

Pseudo-code:

based on xscvdpuxws
reset_xflags()
src <- bfp_CONVERT_FROM_BFP64((FRB))
switch(IT)

case(0): # Signed 32-bit
range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
js_mask <- 0xFFFF_FFFF

case(1): # Unsigned 32-bit
range_min <- bfp_CONVERT_FROM_UI32(0)
range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
js_mask <- 0xFFFF_FFFF

case(2): # Signed 64-bit
range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
js_mask <- 0xFFFF_FFFF_FFFF_FFFF

default: # Unsigned 64-bit
range_min <- bfp_CONVERT_FROM_UI64(0)
range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
js_mask <- 0xFFFF_FFFF_FFFF_FFFF

if (CVM[2] = 1) | (FPSCR[RN] = 0b01) then
rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)

else if FPSCR[RN] = 0b00 then
rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)

else if FPSCR[RN] = 0b10 then
rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)

else if FPSCR[RN] = 0b11 then
rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)

switch(CVM)
case(0, 1): # OpenPower semantics

if IsNaN(rnd) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if bfp_COMPARE_GT(rnd, range_max) then
result <- ui64_CONVERT_FROM_BFP(range_max)

else if bfp_COMPARE_LT(rnd, range_min) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64_CONVERT_FROM_BFP(range_max)

else # Signed 32/64-bit
result <- si64_CONVERT_FROM_BFP(range_max)

case(2, 3): # Java/Saturating semantics
if IsNaN(rnd) then

result <- [0] * 64
else if bfp_COMPARE_GT(rnd, range_max) then

result <- ui64_CONVERT_FROM_BFP(range_max)

FLOATING POINT INTEGER CONVERSION PSEUDOCODE 431

else if bfp_COMPARE_LT(rnd, range_min) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64_CONVERT_FROM_BFP(range_max)

else # Signed 32/64-bit
result <- si64_CONVERT_FROM_BFP(range_max)

default: # JavaScript semantics
CVM = 6, 7 are illegal instructions
this works because the largest type we try to convert from has
53 significand bits, and the largest type we try to convert to
has 64 bits, and the sum of those is strictly less than the 128
bits of the intermediate result.
limit <- bfp_CONVERT_FROM_UI128([1] * 128)
if IsInf(rnd) | IsNaN(rnd) then

result <- [0] * 64
else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then

result <- [0] * 64
else

result128 <- si128_CONVERT_FROM_BFP(rnd)
result <- result128[64:127] & js_mask

switch(IT)
case(0): # Signed 32-bit

result <- EXTS64(result[32:63])
result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])

case(1): # Unsigned 32-bit
result <- EXTZ64(result[32:63])
result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])

case(2): # Signed 64-bit
result_bfp <- bfp_CONVERT_FROM_SI64(result)

default: # Unsigned 64-bit
result_bfp <- bfp_CONVERT_FROM_UI64(result)

if vxsnan_flag = 1 then SetFX(FPSCR[VXSNAN])
if vxcvi_flag = 1 then SetFX(FPSCR[VXCVI])
if xx_flag = 1 then SetFX(FPSCR[XX])
vx_flag <- vxsnan_flag | vxcvi_flag
vex_flag <- FPSCR[VE] & vx_flag
if vex_flag = 0 then

RT <- result
FPSCR[FPRF] <- undefined
FPSCR[FR] <- inc_flag
FPSCR[FI] <- xx_flag
if IsNaN(src) | ¬bfp_COMPARE_EQ(src, result_bfp) then

overflow <- 1 # signals SO only when OE = 1
else

FPSCR[FR] <- 0
FPSCR[FI] <- 0

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCV

FLOATING POINT INTEGER CONVERSION PSEUDOCODE 432

J.231 [DRAFT] Floating Convert To Integer In GPR Single

XO-Form

• fcvttgs RT,FRB,CVM,IT (OE=0 Rc=0)
• fcvttgs. RT,FRB,CVM,IT (OE=0 Rc=1)
• fcvttgso RT,FRB,CVM,IT (OE=1 Rc=0)
• fcvttgso. RT,FRB,CVM,IT (OE=1 Rc=1)

Pseudo-code:

based on xscvdpuxws
reset_xflags()
src <- bfp_CONVERT_FROM_BFP32(SINGLE((FRB)))
switch(IT)

case(0): # Signed 32-bit
range_min <- bfp_CONVERT_FROM_SI32(0x8000_0000)
range_max <- bfp_CONVERT_FROM_SI32(0x7FFF_FFFF)
js_mask <- 0xFFFF_FFFF

case(1): # Unsigned 32-bit
range_min <- bfp_CONVERT_FROM_UI32(0)
range_max <- bfp_CONVERT_FROM_UI32(0xFFFF_FFFF)
js_mask <- 0xFFFF_FFFF

case(2): # Signed 64-bit
range_min <- bfp_CONVERT_FROM_SI64(-0x8000_0000_0000_0000)
range_max <- bfp_CONVERT_FROM_SI64(0x7FFF_FFFF_FFFF_FFFF)
js_mask <- 0xFFFF_FFFF_FFFF_FFFF

default: # Unsigned 64-bit
range_min <- bfp_CONVERT_FROM_UI64(0)
range_max <- bfp_CONVERT_FROM_UI64(0xFFFF_FFFF_FFFF_FFFF)
js_mask <- 0xFFFF_FFFF_FFFF_FFFF

if (CVM[2] = 1) | (FPSCR[RN] = 0b01) then
rnd <- bfp_ROUND_TO_INTEGER_TRUNC(src)

else if FPSCR[RN] = 0b00 then
rnd <- bfp_ROUND_TO_INTEGER_NEAR_EVEN(src)

else if FPSCR[RN] = 0b10 then
rnd <- bfp_ROUND_TO_INTEGER_CEIL(src)

else if FPSCR[RN] = 0b11 then
rnd <- bfp_ROUND_TO_INTEGER_FLOOR(src)

switch(CVM)
case(0, 1): # OpenPower semantics

if IsNaN(rnd) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if bfp_COMPARE_GT(rnd, range_max) then
result <- ui64_CONVERT_FROM_BFP(range_max)

else if bfp_COMPARE_LT(rnd, range_min) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64_CONVERT_FROM_BFP(range_max)

else # Signed 32/64-bit
result <- si64_CONVERT_FROM_BFP(range_max)

case(2, 3): # Java/Saturating semantics
if IsNaN(rnd) then

result <- [0] * 64
else if bfp_COMPARE_GT(rnd, range_max) then

result <- ui64_CONVERT_FROM_BFP(range_max)

FLOATING POINT INTEGER CONVERSION PSEUDOCODE 433

else if bfp_COMPARE_LT(rnd, range_min) then
result <- si64_CONVERT_FROM_BFP(range_min)

else if IT[1] = 1 then # Unsigned 32/64-bit
result <- ui64_CONVERT_FROM_BFP(range_max)

else # Signed 32/64-bit
result <- si64_CONVERT_FROM_BFP(range_max)

default: # JavaScript semantics
CVM = 6, 7 are illegal instructions
this works because the largest type we try to convert from has
53 significand bits, and the largest type we try to convert to
has 64 bits, and the sum of those is strictly less than the 128
bits of the intermediate result.
limit <- bfp_CONVERT_FROM_UI128([1] * 128)
if IsInf(rnd) | IsNaN(rnd) then

result <- [0] * 64
else if bfp_COMPARE_GT(bfp_ABSOLUTE(rnd), limit) then

result <- [0] * 64
else

result128 <- si128_CONVERT_FROM_BFP(rnd)
result <- result128[64:127] & js_mask

switch(IT)
case(0): # Signed 32-bit

result <- EXTS64(result[32:63])
result_bfp <- bfp_CONVERT_FROM_SI32(result[32:63])

case(1): # Unsigned 32-bit
result <- EXTZ64(result[32:63])
result_bfp <- bfp_CONVERT_FROM_UI32(result[32:63])

case(2): # Signed 64-bit
result_bfp <- bfp_CONVERT_FROM_SI64(result)

default: # Unsigned 64-bit
result_bfp <- bfp_CONVERT_FROM_UI64(result)

if vxsnan_flag = 1 then SetFX(FPSCR[VXSNAN])
if vxcvi_flag = 1 then SetFX(FPSCR[VXCVI])
if xx_flag = 1 then SetFX(FPSCR[XX])
vx_flag <- vxsnan_flag | vxcvi_flag
vex_flag <- FPSCR[VE] & vx_flag
if vex_flag = 0 then

RT <- result
FPSCR[FPRF] <- undefined
FPSCR[FR] <- inc_flag
FPSCR[FI] <- xx_flag
if IsNaN(src) | ¬bfp_COMPARE_EQ(src, result_bfp) then

overflow <- 1 # signals SO only when OE = 1
else

FPSCR[FR] <- 0
FPSCR[FI] <- 0

Special Registers Altered:

CR0 (if Rc=1)
SO OV OV32 (if OE=1)
FPRF=0bUUUUU FR FI FX XX VXSNAN VXCV

	Preamble
	Comparison Table
	I Scalable Vectors Primer
	II Scalable Vectors for the Power ISA
	Fields and Forms
	Scalable Vectors for the Power ISA
	Scalable Vectors for the Power ISA
	Sub-pages
	Stability Guarantees in Simple-V
	Optional Scalar instructions
	Architectural Note
	Other Scalable Vector ISAs
	Major opcodes summary
	Other

	Other Vector ISAs
	Comparative analysis
	SIMD ISAs commonly mistaken for Vector
	Actual 3D GPU Architectures and ISAs (all SIMD)
	Actual Scalar Vector Processor Architectures and ISAs

	Overview
	SV Overview
	Introduction: SIMD and Cray Vectors
	SV

	Adding Scalar / Vector
	Register tagging

	Adding single predication
	Predicate zeroing mode
	Element Width overrides
	Why a LE regfile?
	Source and Destination overrides
	Signed arithmetic
	Saturation

	Quick recap so far
	SUBVL

	Swizzle
	Twin Predication
	Exception-based Fail-on-first
	Data-dependent fail-first
	Vertical-First Mode
	Instruction format
	Conclusion

	Compliancy Levels
	Simple-V Compliancy Levels
	Zero-Level
	Ultra-Embedded Level
	Embedded Level
	DSP / Audio / Video Level
	High-end DSP
	3D / Advanced / Supercomputing
	Examples

	SVP64
	SVP64 Zero-Overhead Loop Prefix Subsystem
	Introduction
	SVP64 encoding features
	Definition of Reserved in this spec.
	Definition of UnVectoriseable
	Definition of Strict Program Order
	Register files, elements, and Element-width Overrides
	Scalar Identity Behaviour
	Register Naming and size
	Future expansion.
	SVP64 Remapped Encoding (RM[0:23])
	Common RM fields
	Mode
	ELWIDTH Encoding
	SUBVL Encoding
	MASK/MASK_SRC & MASKMODE Encoding
	Extra Remapped Encoding
	R*_EXTRA2/3
	Appendix

	SPRs
	SPRs
	SVSTATE SPR
	SVLR

	Arithmetic Mode
	Normal SVP64 Modes, for Arithmetic and Logical Operations
	Mode
	Rounding, clamp and saturate
	Reduce mode
	Data-dependent Fail-on-first
	Data-dependent fail-first on CR operations (crand etc)

	Load/Store Mode
	SV Load and Store
	Rationale
	Modes overview
	Format and fields
	Vectorisation of Scalar Power ISA v3.0B
	LD/ST Indexed vs Indexed REMAP
	LD/ST ffirst (Fault-First)
	Data-Dependent Fail-First (not Fail/Fault-First)
	LOAD/STORE Elwidths
	Remapped LD/ST

	Condition Register Fields Mode
	Condition Register SVP64 Operations
	Format
	Data-dependent fail-first on CR operations
	Reduction and Iteration
	Unusual and quirky CR operations
	Effectively-separate Vector and Scalar Condition Register file

	Branch Mode
	SVP64 Branch Conditional behaviour
	Rationale
	Overview
	Format and fields
	Vectorised CR Field numbering, and Scalar behaviour
	Horizontal-First and Vertical-First Modes
	Description and Modes
	Boolean Logic combinations
	Pseudocode and examples

	setvl instruction
	setvl: Set Vector Length
	setvl
	Examples

	svstep instruction
	svstep: Vertical-First Stepping and status reporting
	Appendix

	REMAP subsystem
	REMAP
	Basic principle
	Example Usage
	Horizontal-Parallelism Hint
	REMAP types
	Determining Register Hazards
	REMAP area of SVSTATE SPR

	svremap instruction
	SHAPE Remapping SPRs
	Parallel Reduction / Prefix-Sum Mode
	FFT/DCT mode
	Matrix Mode
	Indexed Mode

	svshape instruction
	svindex instruction
	svshape2 (offset-priority)

	Swizzle Move
	mv.swizzle
	Format
	Pack/Unpack Mode:

	Pack / Unpack
	Vector Pack/Unpack operations
	SVSTATE Pack/unpack Mode bits

	SVP64 Appendix
	Appendix
	Partial Implementations
	XER, SO and other global flags
	EXTRA Field Mapping
	Single Predication
	Twin Predication
	Pack/Unpack
	Reduce modes
	Fail-on-first
	CR Operations
	Register Profiles
	SV pseudocode illustration
	Assembly Annotation
	Parallel-reduction algorithm
	Element-width overrides </>
	Twin (implicit) result operations

	SVP64 Quirks
	The Rules
	Instruction Groups
	Abstraction between Prefix and Suffix
	Predication
	Single Predication
	Twin Predication

	CR weird instructions
	mv.x (vector permute)
	REMAP and other reordering
	Branch-Conditional
	Saturation
	Fail-First
	OE=1
	Indexed REMAP and CR Field Predication Hazards
	Floating-Point Single becomes Half
	Word frequently becomes half
	Vertical-First and Subvectors
	Swizzle and Pack/Unpack
	LD/ST with zero-immediate vs mapreduce mode
	Limited space in LD/ST Mode
	sv.mtcr on entire 64-bit Condition Register
	Separate Scalar and Vector Condition Register files

	REMAP algorithms
	REMAP Matrix pseudocode
	REMAP FFT, DFT, NTT
	svshape pseudocode
	svindex pseudocode
	svshape2 pseudocode

	Simple-V pseudocode
	svstep
	setvl
	svremap
	svshape
	svindex
	svshape2

	Simple-V Analysis
	Simple-V Analysis

	SVP64 Augmentation Table
	Draft SVP64 Power ISA register 'profile's
	map to old SV Prefix
	keys
	LDST-1R-1W-imm (LDSTRM-2P-1S1D)
	LDST-1R-2W-imm (LDSTRM-2P-1S2D)
	LDST-2R (-)
	LDST-2R-imm (LDSTRM-2P-2S)
	LDST-2R-1W (LDSTRM-2P-2S1D)
	LDST-2R-1W-imm (LDSTRM-2P-2S1D)
	LDST-2R-2W (LDSTRM-2P-2S1D)
	LDST-2R-2W-imm (-)
	LDST-3R (LDSTRM-2P-3S)
	LDST-3R-CRo (LDSTRM-2P-3S)
	LDST-3R-1W (LDSTRM-2P-2S1D)
	(non-SV)
	imm (non-SV)
	CRo (-)
	CRio (RM-2P-1S1D)
	CR=2R1W (RM-1P-2S1D)
	1W (non-SV)
	1W-imm (RM-1P-1D)
	1W-CRo (RM-1P-1D)
	1W-CRi (RM-2P-1S1D)
	1W-CRi (RM-2P-1S1D)
	1R (non-SV)
	1R-imm (RM-1P-1S)
	1R-CRo (RM-2P-1S1D)
	1R-CRo (RM-2P-1S1D)
	1R-CRio (RM-2P-2S1D)
	1R-1W (RM-2P-1S1D)
	1R-1W-imm (RM-2P-1S1D)
	1R-1W-CRo (RM-2P-1S1D)
	1R-1W-CRo (RM-2P-1S1D)
	2R (non-SV)
	2R-CRo (RM-1P-2S1D)
	2R-1W (RM-1P-2S1D)
	2R-1W-CRo (RM-1P-2S1D)
	2R-1W-CRo (RM-1P-2S1D)
	2R-1W-CRi (RM-1P-3S1D)
	3R-1W-CRo (RM-1P-3S1D)

	svp64 remaps
	LDSTRM-2P-1S1D
	LDSTRM-2P-1S2D
	LDSTRM-2P-2S
	LDSTRM-2P-2S1D
	LDSTRM-2P-3S
	RM-2P-1S1D
	RM-1P-2S1D
	RM-1P-1D
	RM-1P-1S
	RM-2P-2S1D
	RM-1P-3S1D

	III Scalar Instructions
	SV Vector-assist Scalar ops
	SV Vector-assist Operations.
	Mask-suited Bitmanipulation
	Carry-lookahead

	CR Weird ops
	New instructions for CR/INT predication
	crrweird
	mfcrrweird
	mtcrrweird
	mtcrweird
	mcrfm - Move CR Field, masked.
	crweirder

	Vectorised versions involving GPRs
	Predication Examples

	Bitmanip ops
	Implementation Log
	bitmanipulation
	Draft Opcode tables
	binary and ternary bitops
	ternlogi
	binlut
	crternlogi
	crbinlog

	int ops
	min/m
	average
	absdu
	abs-accumulate

	shift-and-add
	bitmask set
	grevlut
	xperm
	bitmatrix
	Introduction to Carry-less and GF arithmetic
	Instructions for Carry-less Operations
	Carry-less Multiply Instructions
	clmadd Carry-less Multiply-Add
	cltmadd Twin Carry-less Multiply-Add (for FFTs)
	cldivrem Carry-less Division and Remainder
	cldiv Carry-less Division
	clrem Carry-less Remainder

	Instructions for Binary Galois Fields GF(2^m)
	GFBREDPOLY SPR – Reducing Polynomial
	gfbredpoly – Set the Reducing Polynomial SPR GFBREDPOLY
	gfbmul – Binary Galois Field GF(2^m) Multiplication
	gfbmadd – Binary Galois Field GF(2^m) Multiply-Add
	gfbtmadd – Binary Galois Field GF(2^m) Twin Multiply-Add (for FFT)
	gfbinv – Binary Galois Field GF(2^m) Inverse

	Instructions for Prime Galois Fields GF(p)
	GFPRIME SPR – Prime Modulus For gfp* Instructions
	gfpadd Prime Galois Field GF(p) Addition
	gfpsub Prime Galois Field GF(p) Subtraction
	gfpmul Prime Galois Field GF(p) Multiplication
	gfpinv Prime Galois Field GF(p) Invert
	gfpmadd Prime Galois Field GF(p) Multiply-Add
	gfpmsub Prime Galois Field GF(p) Multiply-Subtract
	gfpmsubr Prime Galois Field GF(p) Multiply-Subtract-Reversed
	gfpmaddsubr Prime Galois Field GF(p) Multiply-Add and Multiply-Sub-Reversed (for FFT)

	Already in POWER ISA or subsumed
	cmix
	count leading/trailing zeros with mask
	bit deposit
	bit extract
	centrifuge
	bit to byte permute
	grev
	gorc

	Appendix

	FP/Int Conversion ops
	FPR-to-GPR and GPR-to-FPR
	Proposed New Scalar Instructions
	Float load immediate
	Load BF16 Immediate
	Float Immediate Second-Half MV

	FP Class ops
	fclass

	Audio and Video Opcodes
	Scalar OpenPOWER Audio and Video Opcodes
	Summary
	Instructions
	Average Add
	Absolute Signed Difference
	Absolute Unsigned Difference
	Absolute Accumulate Unsigned Difference
	Absolute Accumulate Signed Difference

	Big Integer
	Big Integer Arithmetic
	Analysis
	DRAFT dsld
	DRAFT dsrd
	maddedu
	divmod2du RT,RA,RB,RC
	[DRAFT] EXT04 Proposed Map

	Transcendentals
	DRAFT Scalar Transcendentals
	TODO:
	Requirements
	Proposed Opcodes vs Khronos OpenCL vs IEEE754-2019
	List of 2-arg opcodes
	List of 1-arg transcendental opcodes
	List of 1-arg trigonometric opcodes

	Opcode Tables for PO=59/63 XO=1—011–
	DRAFT List of 2-arg opcodes
	DRAFT List of 1-arg transcendental opcodes
	DRAFT List of 1-arg trigonometric opcodes
	Subsets
	Transcendental Subsets
	Trigonometric subsets

	Synthesis, Pseudo-code ops and macro-ops
	Evaluation and commentary

	Big Integer Analysis
	Analysis
	Vector Add and Subtract
	Vector Shift
	Vector Multiply
	Vector Divide
	Conclusion

	Bitmanip pseudocode
	Ternary Bitwise Logic Immediate
	Generalized Bit-Reverse
	Generalized Bit-Reverse Immediate
	Generalized Bit-Reverse Word
	Generalized Bit-Reverse Word Immediate
	Add With Shift By Immediate
	Add With Shift By Immediate Word
	Add With Shift By Immediate Unsigned Word

	Floating Point pseudocode
	[DRAFT] Floating Add FFT/DCT [Single]
	[DRAFT] Floating Add FFT/DCT [Double]
	[DRAFT] Floating Subtract FFT/DCT [Single]
	[DRAFT] Floating Subtract FFT/DCT [Double]
	[DRAFT] Floating Multiply FFT/DCT [Single]
	[DRAFT] Floating Multiply FFT/DCT [Double]
	[DRAFT] Floating Divide FFT/DCT [Single]
	[DRAFT] Floating Divide FFT/DCT [Double]
	[DRAFT] Floating Twin Multiply-Add DCT [Single]
	[DRAFT] Floating Multiply-Add FFT [Single]
	[DRAFT] Floating Multiply-Sub FFT [Single]
	[DRAFT] Floating Negative Multiply-Add FFT [Single]
	[DRAFT] Floating Negative Multiply-Sub FFT [Single]

	Fixed Point pseudocode
	[DRAFT] Multiply and Add Extended Doubleword Unsigned
	[DRAFT] Multiply and Add Extended Doubleword Unsigned Signed
	[DRAFT] Divide/Modulo Double-width Doubleword Unsigned
	[DRAFT] Double-width Shift Left Doubleword
	[DRAFT] Double-width Shift Right Doubleword

	IV Scalar Power ISA pseudocode
	Preamble
	Binary Coded Decimal pseudocode
	Convert Declets To Binary Coded Decimal
	Add and Generate Sixes
	Convert Binary Coded Decimal To Declets

	Branch pseudocode
	Branch
	Branch Conditional
	Branch Conditional to Link Register
	Branch Conditional to Count Register
	Branch Conditional to Branch Target Address Register

	Fixed Point Compare pseudocode
	Compare Immediate
	Compare
	Compare Logical Immediate
	Compare Logical
	Compare Ranged Byte
	Compare Equal Byte

	Condition Register pseudocode
	Condition Register AND
	Condition Register NAND
	Condition Register OR
	Condition Register XOR
	Condition Register NOR
	Condition Register Equivalent
	Condition Register AND with Complement
	Condition Register OR with Complement
	Move Condition Register Field

	Fixed Point Arithmetic pseudocode
	Add Immediate
	Add Immediate Shifted
	Add PC Immediate Shifted
	Add
	Subtract From
	Add Immediate Carrying
	Add Immediate Carrying and Record
	Subtract From Immediate Carrying
	Add Carrying
	Subtract From Carrying
	Add Extended
	Subtract From Extended
	Add to Minus One Extended
	Subtract From Minus One Extended
	Add Extended using alternate carry bit
	Subtract From Zero Extended
	Add to Zero Extended
	Negate
	Multiply Low Immediate
	Multiply High Word
	Multiply Low Word
	Multiply High Word Unsigned
	Divide Word
	Divide Word Unsigned
	Divide Word Extended
	Divide Word Extended Unsigned
	Modulo Signed Word
	Modulo Unsigned Word
	Deliver A Random Number
	Multiply Low Doubleword
	Multiply High Doubleword
	Multiply High Doubleword Unsigned
	Multiply-Add High Doubleword VA-Form
	Multiply-Add High Doubleword Unsigned
	Multiply-Add Low Doubleword
	Divide Doubleword
	Divide Doubleword Unsigned
	Divide Doubleword Extended
	Divide Doubleword Extended Unsigned
	Modulo Signed Doubleword
	Modulo Unsigned Doubleword

	Fixed Point Load pseudocode
	Load Byte and Zero
	Load Byte and Zero Indexed
	Load Byte and Zero with Update
	Load Byte and Zero with Update Indexed
	Load Halfword and Zero
	Load Halfword and Zero Indexed
	Load Halfword and Zero with Update
	Load Halfword and Zero with Update Indexed
	Load Halfword Algebraic
	Load Halfword Algebraic Indexed
	Load Halfword Algebraic with Update
	Load Halfword Algebraic with Update Indexed
	Load Word and Zero
	Load Word and Zero Indexed
	Load Word and Zero with Update
	Load Word and Zero with Update Indexed
	Load Word Algebraic
	Load Word Algebraic Indexed
	Load Word Algebraic with Update Indexed
	Load Doubleword
	Load Doubleword Indexed
	Load Doubleword with Update Indexed
	Load Doubleword with Update Indexed
	Load Quadword
	Load Halfword Byte-Reverse Indexed
	Load Word Byte-Reverse Indexed
	Load Doubleword Byte-Reverse Indexed
	Load Multiple Word

	Fixed Point Logical pseudocode
	AND Immediate
	OR Immediate
	AND Immediate Shifted
	OR Immediate Shifted
	XOR Immediate Shifted
	XOR Immediate
	AND
	OR
	XOR
	NAND
	NOR
	Equivalent
	AND with Complement
	OR with Complement
	Extend Sign Byte
	Extend Sign Halfword
	Count Leading Zeros Word
	Count Trailing Zeros Word
	Compare Bytes
	Population Count Bytes
	Population Count Words
	Parity Doubleword
	Parity Word
	Extend Sign Word
	Population Count Doubleword
	Count Leading Zeros Doubleword
	Count Trailing Zeros Doubleword
	Bit Permute Doubleword

	Fixed Point Rotate pseudocode
	Rotate Left Word Immediate then AND with Mask
	Rotate Left Word then AND with Mask
	Rotate Left Word Immediate then Mask Insert
	Rotate Left Doubleword Immediate then Clear Left
	Rotate Left Doubleword Immediate then Clear Right
	Rotate Left Doubleword Immediate then Clear
	Rotate Left Doubleword then Clear Left
	Rotate Left Doubleword then Clear Right
	Rotate Left Doubleword Immediate then Mask Insert
	Shift Left Word
	Shift Right Word
	Shift Right Algebraic Word Immediate
	Shift Right Algebraic Word
	Shift Left Doubleword
	Shift Right Doubleword
	Shift Right Algebraic Doubleword Immediate
	Shift Right Algebraic Doubleword
	Extend-Sign Word and Shift Left Immediate

	Fixed Point Store pseudocode
	Store Byte
	Store Byte Indexed
	Store Byte with Update
	Store Byte with Update Indexed
	Store Halfword
	Store Halfword Indexed
	Store Halfword with Update
	Store Halfword with Update Indexed
	Store Word
	Store Word Indexed
	Store Word with Update
	Store Word with Update Indexed
	Store Doubleword
	Store Doubleword Indexed
	Store Doubleword with Update
	Store Doubleword with Update Indexed
	Store Quadword
	Store Halfword Byte-Reverse Indexed
	Store Word Byte-Reverse Indexed
	Store Doubleword Byte-Reverse Indexed
	Store Multiple Word

	Fixed Point Trap pseudocode
	Trap Word Immediate
	Trap Word
	Trap Doubleword Immediate
	Trap Doubleword
	Integer Select

	Special Purpose Register pseudocode
	Move To Special Purpose Register
	Move From Special Purpose Register
	Move to CR from XER Extended
	Move To One Condition Register Field
	Move To Condition Register Fields
	Move From One Condition Register Field
	Move From Condition Register
	Set Boolean
	Move To Machine State Register
	Move To Machine State Register
	Move From Machine State Register
	Data Cache Block set to Zero
	TLB Invalidate Entry

	String Load/Store pseudocode
	Load String Word Immediate
	Load String Word Indexed
	Store String Word Immediate
	Store String Word Indexed

	System Call pseudocode
	System Call
	System Call Vectored
	Return From System Call Vectored
	Return From Interrupt Doubleword
	Hypervisor Return From Interrupt Doubleword

	Floating Point Load pseudocode
	Load Floating-Point Single
	Load Floating-Point Single Indexed
	Load Floating-Point Single with Update
	Load Floating-Point Single with Update Indexed
	Load Floating-Point Double
	Load Floating-Point Double Indexed
	Load Floating-Point Double with Update
	Load Floating-Point Double with Update Indexed
	Load Floating-Point as Integer Word Algebraic Indexed
	Load Floating-Point as Integer Word Zero Indexed

	Floating Point Store pseudocode
	Store Floating-Point Single
	Store Floating-Point Single Indexed
	Store Floating-Point Single with Update
	Store Floating-Point Single with Update Indexed
	Store Floating-Point Double
	Store Floating-Point Double Indexed
	Store Floating-Point Double with Update
	Store Floating-Point Double with Update Indexed
	Store Floating-Point as Integer Word Indexed

	Floating Point Move pseudocode
	Floating Move Register
	Floating Absolute Value Register
	Floating Negative Absolute Value Register
	Floating Negate Register
	Floating Copy Sign Register
	[DRAFT] Floating Move To GPR
	[DRAFT] Floating Move To GPR Single
	[DRAFT] Floating Move From GPR
	[DRAFT] Floating Move From GPR Single

	Floating Point Arithmetic pseudocode
	Floating Add [Single]
	Floating Add [Double]
	Floating Subtract [Single]
	Floating Subtract [Double]
	Floating Multiply [Single]
	Floating Multiply [Double]
	Floating Divide [Single]
	Floating Divide [Double]
	Floating Multiply-Add [Single]
	Floating Multiply-Sub [Single]
	Floating Negative Multiply-Add [Single]
	Floating Negative Multiply-Sub [Single]

	Floating Point Integer Conversion pseudocode
	Floating Convert with round Signed Doubleword to Single-Precision format
	[DRAFT] Floating Convert From Integer In GPR
	[DRAFT] Floating Convert From Integer In GPR Single
	[DRAFT] Floating Convert To Integer In GPR
	[DRAFT] Floating Convert To Integer In GPR Single

