
The Libre-SOC Hybrid 3D CPU

Draft SVP64 in-place Matrix Multiply
and FFT / DCT for the Power ISA

OpenPOWER Summit 2021

Sponsored by NLnet Grants
and NGI POINTER Grants

28th Oct 2021

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Overview of Libre-SOC goals

I To create power-efficient mass-volume products

I To leverage the OpenPOWER ecosystem to do so

I To be entirely transparent for Security reasons

I To empower businesses to bring Secure transparent
mass-volume products to market

I Mass-volume end-user products need 3D, Video, Audio
therefore we require small-size Matrices (3x3 but not
with 75% utilisation, and 4x4) and the core strategic
parts of A/V CODECs and that means DCT and FFT.
Anything else is a bonus (NTT with Galois Field bitmanip)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Overview of SVP64 goals

I High performance and high performance/watt

I Reduced code density (reduced I-Cache usage)
https://arxiv.org/abs/2002.10143 - 3.5x power reduction

I Remain accessible for assembler writers and compilers alike

I Introduce true Vectorisation to the Power ISA
(VSX is Packed SIMD)

I Be adopted via the external OPF ISA WG RFC process
(not: be a non-official custom extension. proprietary
custom extensions conflict with mass-volume adoption)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Reminder of Simple-V

https://libre-soc.org/openpower/sv/overview/

Greatly simplified (like x86 "REP" instruction):

for (i = 0; i < VL; i++)

GPR[RT+i] <= GPR[RA+i] + GPR[RB+i];

function op add(RT, RA, RB, predr) # add not VADD!

int i, id=0, irs1=0, irs2=0;

for (i = 0; i < VL; i++)

if (GPR[predr] & 1<<i) # predication

GPR[RT+id] <= GPR[RA+irs1] + GPR[RB+irs2];

if (reg is vectorised[RT]) { id += 1; }

if (reg is vectorised[RA]) { irs1 += 1; }

if (reg is vectorised[RB]) { irs2 += 1; }

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

SVP64 REMAP system

Register offsets are "REMAP"ed through a Hardware FSM

https://libre-soc.org/openpower/sv/remap/

remarkably similar to ZOLC

https://www.researchgate.net/publication/224647569

function op add(RT, RA, rs2, predr) # add not VADD!

int i, id=0, irs1=0, irs2=0;

for (i = 0; i < VL; i++)

if (GPR[predr] & 1<<i) # predication

GPR[RT+REMAP(id)] <= GPR[RA+REMAP(irs1)] +

GPR[rs2+REMAP(irs2)];

if (reg is vectorised[RT]) { id += 1; }

if (reg is vectorised[RA]) { irs1 += 1; }

if (reg is vectorised[s2]) { irs2 += 1; }

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: Basics

(a00 a01 a02 x (b00 b01 = (c00 c01

a10 a11 a12) b10 b11 c10 c11) = ...

b20 b21)

(a00*b00 + a01*b10 + a02*b20 a00*b01 + a01*b11 + a02*b21

a10*b00 + a11*b10 + a12*b20 a10*b01 + a11*b11 + a12*b21)

(b00 b01 x (a00 a01 a02 = (c00 c01 c02

b10 b11 a10 a11 a12) c10 c11 c12

b20 b21) c20 c21 c22) = ...

(b00*a00 + b01*a10 b00*a01 + b01*a11 b00*a02 + b01*a12

b10*a00 + b11*a10 b10*a01 + b11*a11 b10*a02 + b11*a12

b20*a00 + b21*a10 b20*a01 + b21*a11 b20*a02 + b21*a12)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: naive, with python for-loops

result = [] # final result

for i in range(len(A)):

row = [] # the new row in new matrix

for j in range(len(B[0])):

product = 0 # the new element in the new row

for v in range(len(A[i])):

product += A[i][v] * B[v][j]

row.append(product) # add sum of product to new row

result.append(row) # add new row into final result

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: suitable for Hardware scheduling

Unsuitable: creates massive Read-After-Write chains

for i in range(len(A)):

for j in range(len(B[0])):

for v in range(len(A[i])):

product[i][j] += A[i][v] * B[v][j]

Suitable: can be parallelised / pipelined. RaW avoided

for i in range(len(A)):

for v in range(len(A[i])): # swapped

for j in range(len(B[0])): # with this

product[i][j] += A[i][v] * B[v][j]

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: Generalise but Specialise

I Why not make a general-purpose nested ”Loop” system?
- Other uses (algorithms) beyond Matrix Multiplication
- Allow any arbitrary-sized loops
- Allow any permutation of nesting
- Allow reversing per-dimension

I Specialise by making Matrix Multiply ”setup” quick/easy
- two 32-bit instructions to set up A, B, C sizes
- one 64-bit SVP64 FMAC instruction (hot-loop).
- Nothing else needed. Saves on I-Cache

I Hardware turns out to be near-identical to ZOLC
https://opencores.org/projects/hwlu
https://libre-soc.org/openpower/sv/remap/

I Concept is actually borrowed from Aspex Array-String
Processor 1D/2D/3D Memory DMA ”reordering” Engine
(except applied to the register file)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: unit test / example

94 def test_sv_remap2(self):

95 lst = ["svshape 5, 4, 3, 0, 0",

96 "svremap 0b11111, 1, 2, 3, 0, 0, 0, 0",

97 "sv.fmadds 0.v, 8.v, 16.v, 0.v"

98]

99 REMAP fmadds FRT, FRA, FRC, FRB

svshape 5, 4, 3, 0, 0 => A: 3x5 B: 3x4

=> C: 3x3

svremap (enable) (F)RS, (F)RT, (F)RA, (F)RB, (F)RC

sv.fmadds: uses fp0 as accumulator

product[i][j] += A[i][v] * B[v][j]

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Matrix Multiply: Ehm that’s all Folks

I Really is that straightforward: no actual Vector ops
- Does not dictate or limit micro-architectural detail
- Issues Scalar FMACs into existing back-end hardware
- Can use any 4-operand instruction (GF, INT, Bitmanip)
- No Power-2 limits. Any operand width (8/16/32/64)

I Limited to 127 scalar ops and in-place registers. Future?
- https://arxiv.org/abs/2002.10143 CISC-like load-and-inc
- Auto-load/store (tagged) registers, keeps RISC ISA
- Extend to memory-based arbitrary NxN matrix sizes
- Still power-efficient: no I-cache usage during FMAC issue

I Future can be investigated as part of EUR 22.6m EU Grant
https://libre-soc.org/SEP-210803722-Libre-SOC-8-core/

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DCT / FFT / DFT / NTT: what if we could REMAP?

I Can we create a REMAP Schedule for FFT (etc)? YES
- More complicated than Matrix Schedules but same principle
- Again: issues Scalar instructions into back-end micro-arch
- Requires 5-operand (3-in, 2-out) new Scalar Instructions
- Any operand width (8/16/32/64)

I Limited to in-place registers and Power-of-Two. Future?
- Again: CISC-like auto-load/store-and-increment
- https://arxiv.org/abs/2002.10143
- Again: still power-efficient (no I-Cache usage in loops)

I Again: can be investigated as part of EUR 22.6m EU Grant
https://libre-soc.org/SEP-210803722-Libre-SOC-8-core/

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DCT / FFT / DFT / NTT: other implementations?

I Texas Instruments TMS320 and C6xx DSPs (VLIW)
- 14 u-Ops per VLIW (including Zero-Overhead Looping)
- Performs Odd/Even FP32 looping single-instruction FFT
- Cannot do anything other than FP32
- Otherwise absolutely brilliant and elegant (20+ years)

I Qualcom Hexagon DSP
- Again: VLIW (29 RISC-like u-Ops in 1 cycle)
- Seriously power-efficient and effective
- Has ZOLC and Complex-number Multiply
- Only seems to handle the inner loop of FFT though

I SVP64
- not limited to inner loop (handles entire triple-loop)
- like Hexagon, not limted to type of operation inside loop
- Complex-number ops: a bit too heavy-duty for now (later?)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Discrete Cosine Transform (DCT): Basics

I Standard DCT Schedule (messy, impossible for SIMD)

I Output is in bit-reversed order
0b000 = 0b000 (in: 0 out: 0)
0b001 = 0b100 (in: 1 out: 4) ...
0b110 = 0b011 (in: 6 out: 3)
0b111 = 0b111 (in: 7 out: 7)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Fast Fourier Transform (FFT/DFT): Butterfly Basics

I Standard Butterfly Schedule (again: messy, but less so)

I Output, again, is in bit-reversed order

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

FFT: 3-in, 2-out butterfly

I One multiply (by coefficient), one add, one subtract

I inputs: X[0] X[1] C(oeff) outputs: X[0] X[1]

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DFT: Project Nayuki Radix-2 Cooley-Tukey DIT (1)

coef = (2 if inverse else -2) * cmath.pi / n

exptable = [cmath.rect(1, i*coef) for i in range(n // 2)]

vec = [vec[reverse_bits(i, levels)] for i in range(n)]

size = 2

while size <= n:

halfsize, tablestep = size // 2, n // size

for i in range(0, n, size):

k = 0

for j in range(i, i + halfsize):

temp = vec[j + halfsize] * exptable[k]

vec[j + halfsize] = vec[j] - temp

vec[j] += temp

k += tablestep

size *= 2

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DFT: Project Nayuki Radix-2 Cooley-Tukey DIT (2)

coef = (2 if inverse else -2) * cmath.pi / n

exptable = [cmath.rect(1, i*coef) for i in range(n // 2)]

vec = [vec[reverse_bits(i, levels)] for i in range(n)]

size = 2

while size <= n:

hs, tablestep = size // 2, n // size

for i in range(0, n, size):

k = 0

for j in range(i, i+hs):

Twin-Butterfly 3-in 2-out: one instruction

C = exptable[k]

vec[j+hs], vec[j] = 2B(vec[j+hs], vec[j], C)

k += tablestep

size *= 2

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DFT: Project Nayuki Radix-2 Cooley-Tukey DIT (3)

I What if the Triple Loop could be done with REMAP?

I Register Offsets j, j+hs, k created automatically?

I Only one actual inner loop instruction (Twin-butterfly)

I 3-in (X0/X1/C) 2-out (X0/X1) allows for in-place FFT

I Hardware FSM (like ZOLC) creates offset triplet
- Technically not that hard to implement (for Radix-2)
- Exact same principle as Triple-loop for Matrices

for j,k,hs in REMAP_TRIPLE_LOOP_GENERATOR():

Twin-Butterfly 3-in 2-out: one instruction

C = exptable[k]

vec[j+hs], vec[j] = 2B(vec[j+hs], vec[j], C)

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

DCT: pre-arrange (pre-load) data

I Arrange input data such that output falls into place

I (another) Twin 3-in 2-out Mul-Add in-place instruction

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

FFT (Complex numbers) and DCT coefficients?

I Problem (DCT): DCT Cosine Coefficients change (cos + 0.5)
depending on the layer. Cannot do as single instruction

I Problem (FFT): Complex number butterfly multiplication
involves 4 multiplies. Cannot do in-place as single instruction

I Solution: ”Vertical-First” Vectors (Mitch Alsup 66000 ISA)

I Understanding of SVP64 ”Vertical-First” 30min video
https://youtube.com/watch?v=fn2KJvWyBKg

I Basically involves stepping ”vertically” through instructions
then (”stepping”) to the next offset (REMAP), loop with bc

I Horizontal-first: run through the entire REMAP schedule on a
single instruction before repeating looping on the next

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

Summary

I Goal is to create a mass-volume low-power embedded SoC
suitable for use in netbooks, chromebooks, tablets,
smartphones, IoT SBCs.

I This means a computational focus on 3D and Audio/Video.
- Critical not to waste 75% of Power-2 SIMD Lanes on 3x3

I Reducing core work to a one-instruction hot-loop inherently
reduces power consumption because the I-Cache is 100% idle.

I REMAP system completely independent from the instructions
it REMAPs. Applies to future scalar ops (GF, Bitmanip)

I Future versions involve proper Zero-Overhead Loop-Control
and hidden ”tags” to automatically perform CISC-like
auto-load/store-and-inc (for much larger data sets)

I Please help contribute: it’s your Open Power ISA too.

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

The end

Thank you

Questions?

I Discussion: Libre-SOC-ISA mailing list
http://lists.libre-soc.org/mailman/listinfo/libre-soc-isa

I Libera IRC #libre-soc

I http://libre-soc.org/

I http://nlnet.nl/PET
https://www.ngi.eu/ngi-projects/ngi-pointer/

Luke Kenneth Casson Leighton The Libre-SOC Hybrid 3D CPU

