
64-bit PowerPC ELF Application Binary
Interface Supplement 1.9

Ian Lance Taylor
Zembu Labs

64-bit PowerPC ELF Application Binary Interface Supplement 1.9
by Ian Lance Taylor

1.9 Edition
Published July 21, 2004
Copyright © 1999, 2004 IBM Corporation
Copyright © 2003, 2004 Free Standards Group

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1; with

no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is available from

http://www.linuxbase.org/spec/refspecs/LSB_1.2.0/gLSB/gfdl.html.

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other

countires: AIX, PowerPC. A full list U.S. trademarks owned by IBM may be found at http://www.ibm.com/legal/copytrade.shtml.

Revision History

Revision 1.1 Revised by: David Edelsohn, IBM Research
PLT
Revision 1.2 Revised by: Torbjorn Granlund, Swox AB
dS relocation
Revision 1.3 Revised by: David Edelsohn and Mark Mendell, IBM
long double
Revision 1.4 Revised by: Alan Modra, IBM
PLT, quad
Revision 1.4.1 Revised by: Kristin Thomas, IBM
Docbook formatted
Revision 1.5 Revised by: Alan Modra, IBM
GOT,PLT relocs, TLS support
Revision 1.6 Revised by: Alan Modra, IBM
structure passing
Revision 1.7 Revised by: Alan Modra, David Edelsohn and Steven Munroe, IBM
VMX extensions, function arguments and double alignment
Revision 1.8 Revised by: David Edelsohn, Chris Lorenz, IBM
single element FP structs and added png graphics
Revision 1.9 Revised by: Alan Modra, IBM
revise FP and vector params, auxv_t, typo fixes

Table of Contents
1. Introduction..1

1.1. How to Use the 64-bit PowerPC ELF ABI Supplement ...1

2. Software Installation ...3
2.1. Physical Distribution Media and Formats...3

3. Low Level System Information...4
3.1. Machine Interface..4

3.1.1. Processor Architecture..4
3.1.2. Data Representation..4
3.1.3. Byte Ordering ...4
3.1.4. Fundamental Types...5
3.1.5. Extended Precision ...6
3.1.6. Aggregates and Unions...7
3.1.7. Bit-fields ...8

3.2. Function Calling Sequence ...11
3.2.1. Registers ...11
3.2.2. The Stack Frame...13
3.2.3. Parameter Passing...15
3.2.4. Return Values..18
3.2.5. Function Descriptors ..19

3.3. Traceback Tables...19
3.3.1. Mandatory Fields..20
3.3.2. Optional Fields ...22

3.4. Process Initialization ...24
3.4.1. Registers ...24
3.4.2. Process Stack ..25

3.5. Coding Examples ..28
3.5.1. Code Model Overview..28
3.5.2. The TOC section...29
3.5.3. TOC Assembly Language Syntax ..30
3.5.4. Function Prologue and Epilogue ..31
3.5.5. Register Saving and Restoring Functions...32
3.5.6. Saving General Registers Only...33
3.5.7. Saving General Registers and Floating Point Registers ...33
3.5.8. Saving Floating Point Registers Only ..34
3.5.9. Save and Restore Services ..34
3.5.10. Data Objects ...39
3.5.11. Function Calls...40
3.5.12. Branching ...42
3.5.13. Dynamic Stack Space Allocation ...43

3.6. DWARF Definition..46
3.6.1. DWARF Release Number...46
3.6.2. DWARF Register Number Mapping ..46

iii

4. Object Files...50
4.1. ELF Header ...50
4.2. Special Sections ..50
4.3. TOC...51
4.4. Symbol Table ..52

4.4.1. Symbol Values ..52
4.5. Relocation ...52

4.5.1. Relocation Types ..52

5. Program Loading and Dynamic Linking ..61
5.1. Program Loading...61

5.1.1. Program Interpreter ..63
5.2. Dynamic Linking ..63

5.2.1. Dynamic Section ..64
5.2.2. Global Offset Table...64
5.2.3. Function Addresses ..65
5.2.4. Procedure Linkage Table ..65

6. Libraries ...69

iv

List of Figures
3-1. Bit and Byte Numbering in Halfwords...5
3-2. Bit and Byte Numbering in Words ...5
3-3. Bit and Byte Numbering in Doublewords ..5
3-4. Bit and Byte Numbering in Quadwords ...5
3-5. Structure Smaller Than a Word ..8
3-6. No Padding ...8
3-7. Internal Padding ...8
3-8. Internal and Tail Padding..8
3-9. Union Allocation ..8
3-10. Bit Numbering..10
3-11. Bit-field Allocation...10
3-12. Boundary Alignment ..10
3-13. Doubleword Boundary Alignment ...10
3-14. Storage Unit Sharing ..10
3-15. Union Allocation ..10
3-16. Unnamed bit-fields ...11
3-17. Stack Frame Organiztion..13
3-18. Parameter Passing...18
4-1. Relocation Table...57
5-1. Virtual Address...62

v

Chapter 1. Introduction

ELF defines a linking interface for compiled application programs. ELF is described in two parts. The
first part is the generic System V ABI. The second part is a processor specific supplement.

This document is the processor specific supplement for use with ELF on 64-bit PowerPC® processor
systems.

This document is not a complete System V Application Binary Interface Supplement, because it does not
define any library interfaces.

In the 64-bit PowerPC Architecture™, a processor can run in either of two modes: big-endian mode or
little-endian mode. (See Section 3.1.3.) Accordingly, this ABI specification really defines two binary
interfaces, a big-endian ABI and a little-endian ABI. Programs and (in general) data produced by
programs that run on an implementation of the big-endian interface are not portable to an
implementation of the little-endian interface, and vice versa. The 64-bit PowerPC ELF ABI is not the
same as the 32-bit PowerPC ELF ABI, nor is it a simple extension. A system which supports the 64-bit
PowerPC ELF ABI may, but need not, support the 32-bit PowerPC ELF ABI.

The 64-bit PowerPC ELF ABI is intended to use the same structure layout and calling convention rules
as the 64-bit PowerOpen ABI.

1.1. How to Use the 64-bit PowerPC ELF ABI Supplement

While the generic System V ABI is the prime reference document, this document contains 64-bit
PowerPC processor-specific implementation details, some of which supersedes information in the
generic ABI.

As with the System V ABI, this document refers to other publicly available documents, especially the
book titled IBM PowerPC User Instruction Set Architecture, all of which should be considered part of
this 64-bit PowerPC Processor ABI Supplement and just as binding as the requirements and data it
explicitly includes.

The following documents may be of interest to the reader of this specification:

• System V Interface Definition, Issue 3.

• The PowerPC Architecture: A Specification for A New Family of RISC Processors. International
Business Machines (IBM). San Francisco: Morgan Kaufmann, 1994.

• DWARF Debugging Information Format, Revision: Version 2.0.0 , July 27, 1993. UNIX International,
Program Languages SIG.

1

Chapter 1. Introduction

• The [32-bit] PowerPC Processor Supplement, Sun Microsystems, 1995.

• The [32-bit] AltiVec Technology Programming Interface Manual, Motorola, 1999.

• The 64-bit AIX ABI.

• The PowerOpen ABI.

2

Chapter 2. Software Installation

2.1. Physical Distribution Media and Formats

This document does not specify any physical distribution media or formats. Any agreed upon distribution
media may be used.

3

Chapter 3. Low Level System Information

3.1. Machine Interface

3.1.1. Processor Architecture

The PowerPC Architecture: A Specification for A New Family of RISC Processors defines the 64-bit
PowerPC Architecture. Programs intended to execute directly on the processor use the 64-bit PowerPC
instruction set, and the instruction encodings and semantics of the architecture.

An application program can assume that all instructions defined by the architecture that are neither
privileged nor optional exist and work as documented. However, the "Fixed-Point Move Assist"
instructions are not available in little-endian implementations. In little-endian mode, these instructions
always cause alignment exceptions in the 64-bit PowerPC Architecture; in big-endian mode they are
usually slower than a sequence of other instructions that have the same effect.

To be ABI-conforming, the processor must implement the instructions of the architecture, perform the
specified operations, and produce the expected results. The ABI neither places performance constraints
on systems nor specifies what instructions must be implemented in hardware. A software emulation of
the architecture could conform to the ABI.

Some processors might support the optional instructions in the 64-bit PowerPC Architecture, or
additional non-64-bit-PowerPC instructions or capabilities. Programs that use those instructions or
capabilities do not conform to the 64-bit PowerPC ABI; executing them on machines without the
additional capabilities gives undefined behavior.

3.1.2. Data Representation

3.1.3. Byte Ordering

The architecture defines an 8-bit byte, a 16-bit halfword, a 32-bit word, a 64-bit doubleword, and a
128-bit quadword. Byte ordering defines how the bytes that make up halfwords, words, doublewords,
and quadwords are ordered in memory. Most significant byte (MSB) byte ordering, or "big-endian" as it
is sometimes called, means that the most significant byte is located in the lowest addressed byte position
in a storage unit (byte 0). Least significant byte (LSB) byte ordering, or "little-endian" as it is sometimes

4

Chapter 3. Low Level System Information

called, means that the least significant byte is located in the lowest addressed byte position in a storage
unit (byte 0).

The 64-bit PowerPC processor family supports either big-endian or little-endian byte ordering. This
specification defines two ABIs, one for each type of byte ordering. An implementation must state which
type of byte ordering it supports. The following figures illustrate the conventions for bit and byte
numbering within various width storage units. These conventions apply to both integer data and
floating-point data, where the most significant byte of a floating-point value holds the sign and at least
the start of the exponent. The figures show little-endian byte numbers in the upper right corners,
big-endian byte numbers in the upper left corners, and bit numbers in the lower corners.

Note: In the 64-bit PowerPC Architecture documentation, the bits in a word are numbered from left to
right (MSB to LSB), and figures usually show only the big-endian byte order.

Figure 3-1. Bit and Byte Numbering in Halfwords

Figure 3-2. Bit and Byte Numbering in Words

Figure 3-3. Bit and Byte Numbering in Doublewords

Figure 3-4. Bit and Byte Numbering in Quadwords

3.1.4. Fundamental Types

The following table shows how ANSI C scalar types correspond to those of the 64-bit PowerPC
processor. For all types, a NULL pointer has the value zero. The alignment column specifies the required
alignment of a field of the given type within a struct. Variables may be more strictly aligned than is
shown in the table, but fields in a struct must follow the alignment specified in order to ensure consistent
struct mapping.

Type ANSI C sizeof Alignment PowerPC

boolean _bool 1 byte unsigned byte

Character char 1 byte unsigned byte

unsigned char
--
signed char 1 byte signed byte
--
short 2 halfword signed halfword

5

Chapter 3. Low Level System Information

signed short
--
unsigned short 2 halfword unsigned halfword

Integral int 4 word signed word

signed int
enum
--
unsigned int 4 word unsigned word
--
long int 8 doubleword signed doubleword
signed long
long long
--
unsigned long 8 doubleword unsigned doubleword
unsigned long long
--
__int128_t 16 quadword signed quadword
--
__uint128_t 16 quadword unsigned quadword

Pointer any * 8 doubleword unsigned doubleword

any (*) ()

Floating float 4 word single precision

--
double 8 doubleword double precision
--
long double 16 quadword extended precision

vector 16*char 16 quadword vector of signed bytes

--
16*unsigned 16 quadword vector of unsigned
char bytes
--
8*short 16 quadword vector of signed

halfwords
--
8*unsigned 16 quadword vector of unsigned
short halfwords
--
4*int 16 quadword vector of signed

words
--
4*unsigned int 16 quadword vector of unsigned

words
--
4*float 16 quadword vector of floats

6

Chapter 3. Low Level System Information

3.1.5. Extended Precision

"Extended precision" is the IBM AIX® 128-bit long double format composed of two double-precision
numbers with different magnitudes that do not overlap. The high-order double-precision value (the one
that comes first in storage) must have the larger magnitude. The value of the extended-precision number
is the sum of the two double-precision values.

• Extended precision provides the same range of double precision (about 10**(-308) to 10**308) but
more precision (a variable amount, about 31 decimal digits or more).

• As the absolute value of the magnitude decreases (near the denormal range), the precision available in
the low-order double also decreases.

• When the value represented is in the denormal range, this representation provides no more precision
than 64-bit (double) floating point.

• The actual number of bits of precision can vary. If the low-order part is much less then 1 ULP of the
high-order part, significant bits (either all 0’s or all 1’s) are implied between the significands of
high-order and low-order numbers. Some algorithms that rely on having a fixed number of bits in the
significand can fail when using "Extended precision".

This "Extended precision" differs from the IEEE 754 Standard in the following ways:

• The software support is restricted to round-to-nearest mode. Programs that use extended precision
must ensure that this rounding mode is in effect when extended-precision calculations are performed.

• Does not fully support the IEEE special numbers NaN and INF. These values are encoded in the
high-order double value only. The low-order value is not significant.

• Does not support the IEEE status flags for overflow, underflow, and other conditions. These flag have
no meaning in this format.

3.1.6. Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component, that is, the component with the largest alignment. The size of any object, including
aggregates and unions, is always a multiple of the alignment of the object. An array uses the same
alignment as its elements. Structure and union objects may require padding to meet size and alignment
constraints:

• An entire structure or union object is aligned on the same boundary as its most strictly aligned
member.

• Each member is assigned to the lowest available offset with the appropriate alignment. This may
require internal padding, depending on the previous member.

• If necessary, a structure’s size is increased to make it a multiple of the structure’s alignment. This may
require tail padding, depending on the last member.

7

Chapter 3. Low Level System Information

In the following examples, members’ byte offsets for little-endian implementations appear in the upper
right corners; offsets for big-endian implementations in the upper left corners.

Figure 3-5. Structure Smaller Than a Word

struct {
char c;

};
byte aligned, sizeof is 1

Figure 3-6. No Padding

struct {
char c;
char d;
short s;
int n;

};
word aligned, sizeof is 8

Figure 3-7. Internal Padding

struct {
char c;
short s;

};
halfword aligned, sizeof is 4

Figure 3-8. Internal and Tail Padding

struct {
char c;
double d;
short s;
};
doubleword aligned, sizeof is 24

Figure 3-9. Union Allocation

union {
char c;
short s;
int j;

};
word aligned, sizeof is 4

8

Chapter 3. Low Level System Information

3.1.7. Bit-fields

C struct and union definitions may have "bit-fields," defining integral objects with a specified number of
bits.

In the following table, a signed range goes from - (2(w - 1)) to (2(w - 1)) - 1 and an unsigned range goes from
0 to (2w) - 1.

Bit-field type Width (w) Range

signed char 1 to 8 signed
char unsigned
unsigned char unsigned

signed short 1 to 16 signed
short signed
unsigned short unsigned

signed int 1 to 32 signed
int signed
unsigned int unsigned
enum unsigned

signed long 1 to 64 signed
long signed
unsigned long unsigned

"Plain" bit-fields (that is, those neither signed nor unsigned) may have either positive or negative values,
except in the case of plain char, which is always positive. Bit-fields obey the same size and alignment
rules as other structure and union members, with the following additions:

• Bit-fields are allocated from right to left (least to most significant) on little-endian implementations
and from left to right (most to least significant) on big-endian implementations.

• Bit-fields are limited to at most 64 bits. Adjacent bit-fields that cross a 64-bit boundary will start a new
storage unit.

• The alignment of a bit-field is the same as the alignment of the base type of the bit-field. Thus, an int
bit-field will have word alignment.

• Bit-fields must share a storage unit with other structure and union members (either bit-field or
non-bit-field) if and only if there is sufficient space within the storage unit.

• Unnamed bit-fields’ types do not affect the alignment of a structure or union, although an individual
bit-field’s member offsets obey the alignment constraints. An unnamed, zero-width bit-field shall
prevent any further member, bit-field or other, from residing in the storage unit corresponding to the
type of the zero-width bit-field.

Note: The 64-bit PowerOpen ABI restricts bit-fields to be of type signed int, unsigned int, plain int,
long, or unsigned long. This document does not have that restriction.

9

Chapter 3. Low Level System Information

The 32-bit PowerPC Processor Supplement specifies that a bit-field must entirely reside in a storage
unit appropriate for its declared type. This document only restricts bit-fields to a 64-bit storage unit.

The following examples show struct and union members’ byte offsets in the upper right corners for
little-endian implementations, and in the upper left corners for big-endian implementations. Bit numbers
appear in the lower corners.

Figure 3-10. Bit Numbering

Figure 3-11. Bit-field Allocation

struct {
int j : 5;
int k : 6;
int m : 7;

};
word aligned, sizeof is 4

Figure 3-12. Boundary Alignment

struct {
short s : 9;
int j : 9;
char c;
short t : 9;
short u : 9;
char d;

};
word aligned, sizeof is 8

Figure 3-13. Doubleword Boundary Alignment

struct {
long i : 56;
int j : 9:

};
doubleword aligned, sizeof is 16

Figure 3-14. Storage Unit Sharing

struct {
char c;
short s : 8;

};
halfword aligned, sizeof is 2

10

Chapter 3. Low Level System Information

Figure 3-15. Union Allocation

union {
char c;
short s : 8;

};
halfword aligned, sizeof is 2

Figure 3-16. Unnamed bit-fields

struct {
char c;
int : 0;
char d;
short : 9;
char e;

};
byte aligned, sizeof is 8

Note: In this example, the presence of the unnamed int and short fields does not affect the alignment
of the structure. They align the named members relative to the beginning of the structure, but the
named members may not be aligned in memory on suitable boundaries. For example, the d
members in an array of these structures will not all be on an int (4-byte) boundary.

3.2. Function Calling Sequence

This section discusses the standard function calling sequence, including stack frame layout, register
usage, and parameter passing.

C programs follow the conventions given here. For specific information on the implementation of C, see
Section 3.5.

Note: The standard calling sequence requirements apply only to global functions. Local functions
that are not reachable from other compilation units may use different conventions as long as they
provide traceback tables as described in Section 3.3. Nonetheless, it is recommended that all
functions use the standard calling sequences when possible.

3.2.1. Registers

The 64-bit PowerPC Architecture provides 32 general purpose registers, each 64 bits wide. In addition,
the architecture provides 32 floating-point registers, each 64 bits wide, and several special purpose

11

Chapter 3. Low Level System Information

registers. All of the integer, special purpose, and floating-point registers are global to all functions in a
running program. The following table shows how the registers are used.

r0 Volatile register used in function prologs
r1 Stack frame pointer
r2 TOC pointer
r3 Volatile parameter and return value register
r4-r10 Volatile registers used for function parameters
r11 Volatile register used in calls by pointer and as an

environment pointer for languages which require one
r12 Volatile register used for exception handling and glink code
r13 Reserved for use as system thread ID
r14-r31 Nonvolatile registers used for local variables

f0 Volatile scratch register
f1-f4 Volatile floating point parameter and return value registers
f5-f13 Volatile floating point parameter registers
f14-f31 Nonvolatile registers

LR Link register (volatile)
CTR Loop counter register (volatile)
XER Fixed point exception register (volatile)
FPSCR Floating point status and control register (volatile)

CR0-CR1 Volatile condition code register fields
CR2-CR4 Nonvolatile condition code register fields
CR5-CR7 Volatile condition code register fields

On processors with the VMX feature.

v0-v1 Volatile scratch registers
v2-v13 Volatile vector parameters registers
v14-v19 Volatile scratch registers
v20-v31 Non-volatile registers
vrsave Non-volatile 32-bit register

The existence of the VMX feature will be indicated in the AT_HWCAP auxiliary vector entry.

Registers r1, r14 through r31, and f14 through f31 are nonvolatile, which means that they preserve their
values across function calls. Functions which use those registers must save the value before changing it,
restoring it before the function returns. Register r2 is technically nonvolatile, but it is handled specially
during function calls as described below: in some cases the calling function must restore its value after a
function call.

Registers r0, r3 through r12, f0 through f13, and the special purpose registers LR, CTR, XER, and
FPSCR are volatile, which means that they are not preserved across function calls. Furthermore, registers
r0, r2, r11, and r12 may be modified by cross-module calls, so a function can not assume that the values
of one of these registers is that placed there by the calling function.

12

Chapter 3. Low Level System Information

The condition code register fields CR0, CR1, CR5, CR6, and CR7 are volatile. The condition code
register fields CR2, CR3, and CR4 are nonvolatile; a function which modifies them must save and restore
at least those fields of the CR. Languages that require "environment pointers" shall use r11 for that
purpose.

The following registers have assigned roles in the standard calling sequence:

r1

The stack pointer (stored in r1) shall maintain quadword alignment. It shall always point to the
lowest allocated valid stack frame, and grow toward low addresses. The contents of the word at that
address always point to the previously allocated stack frame. If required, it can be decremented by
the called function. See Section 3.5.13 for additional information. As discussed later in this chapter,
the lowest valid stack address is 288 bytes less than the value in the stack pointer. The stack pointer
must be atomically updated by a single instruction, thus avoiding any timing window in which an
interrupt can occur with a partially updated stack.

r2

This register holds the TOC base. See Section 3.5.2 for additional information.

r3 through r10 and f1 through f13

These sets of volatile registers may be modified across function invocations and shall therefore be
presumed by the calling function to be destroyed. They are used for passing parameters to the called
function. See Section 3.2.3 for additional information. In addition, registers r3 and f1 through f4 are
used to return values from the called function, as described in Section 3.2.4.

LR (Link Register)

This register shall contain the address to which a called function normally returns. LR is volatile
across function calls.

Signals can interrupt processes (see signal (BA-OS) in the System V Interface Definition). Functions
called during signal handling have no unusual restrictions on their use of registers. Moreover, if a signal
handling function returns, the process resumes its original execution path with all registers restored to
their original values. Thus, programs and compilers may freely use all registers above except those
reserved for system use without the danger of signal handlers inadvertently changing their values.

3.2.2. The Stack Frame

In addition to the registers, each function may have a stack frame on the runtime stack. This stack grows
downward from high addresses. The following figure shows the stack frame organization. SP in the
figure denotes the stack pointer (general purpose register r1) of the called function after it has executed
code establishing its stack frame.

13

Chapter 3. Low Level System Information

Figure 3-17. Stack Frame Organiztion

High Address

+-> Back chain
| Floating point register save area
| General register save area
| VRSAVE save word (32-bits)
| Alignment padding (4 or 12 bytes)
| Vector register save area (quadword aligned)
| Local variable space
| Parameter save area (SP + 48)
| TOC save area (SP + 40)
| link editor doubleword (SP + 32)
| compiler doubleword (SP + 24)
| LR save area (SP + 16)
| CR save area (SP + 8)

SP ---> +-- Back chain (SP + 0)

Low Address

The following requirements apply to the stack frame:

• The stack pointer shall maintain quadword alignment.

• The stack pointer shall point to the first word of the lowest allocated stack frame, the "back chain"
word. The stack shall grow downward, that is, toward lower addresses. The first word of the stack
frame shall always point to the previously allocated stack frame (toward higher addresses), except for
the first stack frame, which shall have a back chain of 0 (NULL).

• The stack pointer shall be decremented by the called function in its prologue, if required, and restored
prior to return.

• The stack pointer shall be decremented and the back chain updated atomically using one of the "Store
Double Word with Update" instructions, so that the stack pointer always points to the beginning of a
linked list of stack frames.

• The sizes of the floating-point and general register save areas may vary within a function and are as
determined by the traceback table described below.

• Before a function changes the value in any nonvolatile floating-point register, frn, it shall save the
value in frn in the double word in the floating-point register save area 8*(32-n) bytes before the back
chain word of the previous frame. The floating-point register save area is always doubleword aligned.
The size of the floating-point register save area depends upon the number of floating point registers
which must be saved. It ranges from 0 bytes to a maximum of 144 bytes (18 * 8).

• Before a function changes the value in any nonvolatile general register, rn, it shall save the value in rn
in the word in the general register save area 8*(32-n) bytes before the low addressed end of the
floating-point register save area. The general register save area is always doubleword aligned. The size
of the general register save area depends upon the number of general registers which must be saved. It
ranges from 0 bytes to a maximum of 144 bytes (18 * 8).

• Functions must ensure that the appropriate bits in the vrsave register are set for any vector registers
they use. A function that changes the value of the vrsave register shall save the original value of vrsave

14

Chapter 3. Low Level System Information

into the word below the low address end of the general register save area. Below the vrsave save area
will be 4 or 12 bytes of alignment padding as needed to ensure that the vector register save area is
quadword aligned.

• Before a function changes the value in any nonvolatile vector register, vrn, it shall save the value in vrn
in the word in the vector register save area 16*(32-n) bytes before the low addressed end of the vrsave
save area plus alignment padding. The vector register save area is always quadword aligned. The size
of the vector register save area depends upon the number of vector registers which must be saved; it
ranges from 0 bytes to a maximum of 192 bytes (12 * 16).

• The local variable space contains any local variable storage required by the function. If vector registers
are saved the local variable space area will be padded so that the vector register save area is quadword
aligned.

• The parameter save area shall be allocated by the caller. It shall be doubleword aligned, and shall be at
least 8 doublewords in length. If a function needs to pass more than 8 doublewords of arguments, the
parameter save area shall be large enough to contain the arguments that the caller stores in it. Its
contents are not preserved across function calls.

• The TOC save area is used by global linkage code to save the TOC pointer register. See The TOC
section later in the chapter.

• The link editor doubleword is reserved for use by code generated by the link editor. This ABI does not
specify any usage; the AIX link editor uses this space under certain circumstances.

• The compiler doubleword is reserved for use by the compiler. This ABI does not specify any usage;
the AIX compiler uses this space under certain circumstances.

• Before a function calls any other functions, it shall save the value in the LR register in the LR save
area.

• Before a function changes the value in any nonvolatile field in the condition register, it shall save the
values in all the nonvolatile fields of the condition register at the time of entry to the function in the
CR save area.

• The 288 bytes below the stack pointer is available as volatile storage which is not preserved across
function calls. Interrupt handlers and any other functions that might run without an explicit call must
take care to preserve this region. If a function does not need more stack space than is available in this
area, it does not need to have a stack frame.

The stack frame header consists of the back chain word, the CR save area, the LR save area, the compiler
and link editor doublewords, and the TOC save area, for a total of 48 bytes. The back chain word always
contains a pointer to the previously allocated stack frame. Before a function calls another function, it
shall save the contents of the link register at the time the function was entered in the LR save area of its
caller’s stack frame and shall establish its own stack frame.

Except for the stack frame header and any padding necessary to make the entire frame a multiple of 16
bytes in length, a function need not allocate space for the areas that it does not use. If a function does not
call any other functions and does not require any of the other parts of the stack frame, it need not
establish a stack frame. Any padding of the frame as a whole shall be within the local variable area; the
parameter save area shall immediately follow the stack frame header, and the register save areas shall
contain no padding except as noted for VRSAVE.

15

Chapter 3. Low Level System Information

3.2.3. Parameter Passing

For a RISC machine such as 64-bit PowerPC, it is generally more efficient to pass arguments to called
functions in registers (both general and floating-point registers) than to construct an argument list in
storage or to push them onto a stack. Since all computations must be performed in registers anyway,
memory traffic can be eliminated if the caller can compute arguments into registers and pass them in the
same registers to the called function, where the called function can then use them for further computation
in the same registers. The number of registers implemented in a processor architecture naturally limits
the number of arguments that can be passed in this manner.

For the 64-bit PowerPC, up to eight doublewords are passed in general purpose registers, loaded
sequentially into general purpose registers r3 through r10. Up to thirteen floating-point arguments can be
passed in floating-point registers f1 through f13. If VMX is supported, up to twelve vector parameters
can be passed in v2 through v13. If fewer (or no) arguments are passed, the unneeded registers are not
loaded and will contain undefined values on entry to the called function.

The parameter save area, which is located at a fixed offset of 48 bytes from the stack pointer, is reserved
in each stack frame for use as an argument list. A minimum of 8 doublewords is always reserved. The
size of this area must be sufficient to hold the longest argument list being passed by the function which
owns the stack frame. Although not all arguments for a particular call are located in storage, consider
them to be forming a list in this area, with each argument occupying one or more doublewords.

If more arguments are passed than can be stored in registers, the remaining arguments are stored in the
parameter save area. The values passed on the stack are identical to those that have been placed in
registers; thus, the stack contains register images.

For variable argument lists, this ABI uses a va_list type which is a pointer to the memory location of the
next parameter. Using a simple va_list type means that variable arguments must always be in the same
location regardless of type, so that they can be found at runtime. This ABI defines the location to be
general registers r3 through r10 for the first eight doublewords and the stack parameter save area
thereafter. Alignment requirements such as those for vector types may require the va_list pointer to first
be aligned before accessing a value.

The rules for parameter passing are as follows:

• Each argument is mapped to as many doublewords of the parameter save area as are required to hold
its value.

• Single precision floating point values are mapped to the second word in a single doubleword.

• Double precision floating point values are mapped to a single doubleword.

• Extended precision floating point values are mapped to two consecutive doublewords.

• Simple integer types (char, short, int, long, enum) are mapped to a single doubleword. Values
shorter than a doubleword are sign or zero extended as necessary.

16

Chapter 3. Low Level System Information

• Complex floating point and complex integer types are mapped as if the argument was specified as
separate real and imaginary parts.

• Pointers are mapped to a single doubleword.

• Vectors are mapped to a single quadword, quadword aligned. This may result in skipped
doublewords in the parameter save area.

• Fixed size aggregates and unions passed by value are mapped to as many doublewords of the
parameter save area as the value uses in memory. Aggregrates and unions are aligned according to
their alignment requirements. This may result in doublewords being skipped for alignment.

• An aggregate or union smaller than one doubleword in size is padded so that it appears in the least
significant bits of the doubleword. All others are padded, if necessary, at their tail. Variable size
aggregates or unions are passed by reference.

• Other scalar values are mapped to the number of doublewords required by their size.

• If the callee has a known prototype, arguments are converted to the type of the corresponding
parameter before being mapped into the parameter save area. For example, if a long is used as an
argument to a float double parameter, the value is converted to double-precision and mapped to a
doubleword in the parameter save area.

• Floating point registers f1 through f13 are used consecutively to pass up to 13 floating point values,
one member aggregates passed by value containing a floating point value, and to pass complex floating
point values. The first 13 of all doublewords in the parameter save area that map floating point
arguments, except for arguments corresponding to the variable argument part of a callee with a
prototype containing an ellipsis, will be passed in floating point registers. A single precision value
occupies one register as does a double precision value. Extended precision values occupy two
consecutively numbered registers. The corresponding complex values occupy twice as many registers.
Note that for one member aggregates, "containing" extends to aggregates within aggregates ad
infinitum.

• Vector registers v2 through v13 are used to consecutively pass up to 12 vector values, except for
arguments corresponding to the variable argument part of a callee with a prototype containing an
ellipsis. As for floating point arguments, an aggregate passed by value containing one vector value is
treated as if the value were not wrapped in an aggregate.

• If there is no known function prototype for a callee, or if the function prototype for a callee contains an
ellipsis and the argument value is not part of the fixed arguments described by the prototype, then
floating point and vector values are passed according to the following rules for non-floating,
non-vector types. In the case of no known prototype this may result in two copies of floating and
vector argument values being passed.

• General registers are used to pass some values. The first eight doublewords mapped to the parameter
save area correspond to the registers r3 through r10. An argument other than floating point and vector
values fully described by a prototype, that maps to this area either fully or partially, is passed in the
corresponding general registers.

• All other arguments (or parts thereof) not already covered must be stored in the parameter save area
following the first eight doublewords. The first eight doublewords mapped to the parameter save area
are never stored in the parameter save area by the calling function.

17

Chapter 3. Low Level System Information

• If the callee takes the address of any of its parameters, then values passed in registers are stored into
the parameter save area by the callee. If the compilation unit for the caller contains a function
prototype, but the callee has a mismatching definition, this may result in the wrong values being stored.

Figure 3-18. Parameter Passing

typedef struct {
int a;
double dd;

} sparm;
sparm s, t;
int c, d, e;
long double ld;
double ff, gg, hh;

x = func(c, ff, d, ld, s, gg, t, e, hh);
Parameter Register Offset in parameter save area
c r3 0-7 (not stored in parameter save area)
ff f1 8-15 (not stored)
d r5 16-23 (not stored)
ld f2,f3 24-39 (not stored)
s r8,r9 40-55 (not stored)
gg f4 56-63 (not stored)
t (none) 64-79 (stored in parameter save area)
e (none) 80-87 (stored)
hh f5 88-95 (not stored)

Note: If a prototype is not in scope, then the floating point argument ff is also passed in r4, the long
double argument ld is also passed in r6 and r7, the floating point argument gg is also passing in r10,
and the floating point argument gg is also stored into the parameter save area. If a prototype
containing an ellipsis describes any of these floating point arguments as being part of the variable
argument part, then the general registers and parameter save area are used as when no prototype is
in scope, and the floating point register(s) are not used.

3.2.4. Return Values

Functions shall return float or double values in f1, with float values rounded to single precision.

When the VMX facility is supported, functions shall return vector data type values in v2.

Functions shall return values of type int, long, enum, short, and char, or a pointer to any type, as
unsigned or signed integers as appropriate, zero- or sign-extended to 64 bits if necessary, in r3. Character
arrays of length 8 bytes or less, or bit strings of length 64 bits or less, will be returned right justified in r3.
Aggregates or unions of any length, and character strings of length longer than 8 bytes, will be returned
in a storage buffer allocated by the caller. The caller will pass the address of this buffer as a hidden first

18

Chapter 3. Low Level System Information

argument in r3, causing the first explicit argument to be passed in r4. This hidden argument is treated as a
normal formal parameter, and corresponds to the first doubleword of the parameter save area.

Functions shall return floating point scalar values of size 16 or 32 bytes in f1:f2 and f1:f4, respectively.

Functions shall return floating point complex values of size 16 (four or eight byte complex) in f1:f2 and
floating point complex values of size 32 (16 byte complex) in f1:f4.

3.2.5. Function Descriptors

A function descriptor is a three doubleword data structure that contains the following values:

• The first doubleword contains the address of the entry point of the function.

• The second doubleword contains the TOC base address for the function (see Section 4.3 later in this
chapter).

• The third doubleword contains the environment pointer for languages such as Pascal and PL/1.

For an externally visible function, the value of the symbol with the same name as the function is the
address of the function descriptor. Symbol names with a dot (.) prefix are reserved for holding entry point
addresses. The value of a symbol named ".FN", if it exists, is the entry point of the function "FN".

The value of a function pointer in a language like C is the address of the function descriptor. Examples of
calling a function through a pointer are provided in Section 3.5.11.

When the link editor processes relocatable object files in order to produce an executable or shared object,
it must treat direct function calls specially, as described below.

3.3. Traceback Tables

To support debuggers and exception handlers, the 64-bit PowerPC ELF ABI defines traceback tables.
Compilers must support generation of at least the mandatory part of traceback tables, and system
libraries should contain the mandatory part. Compilers should provide an option to turn off traceback
table generation to save space when the information is not needed.

Traceback tables are intended to be compatible with the 64-bit PowerOpen ABI.

Compilers should generate a traceback table following the end of the code for every function. Debuggers
and exception handlers can locate the traceback tables by scanning forward from the instruction address
at the point of interruption. The beginning of the traceback table is marked by a word of zeroes, which is

19

Chapter 3. Low Level System Information

an illegal instruction. If read-only constants are compiled into the same section as the function code, they
must follow the traceback table. A word of zeroes as read-only data must not be the first word following
the code for a function. A traceback table is word-aligned.

3.3.1. Mandatory Fields

The following are the mandatory fields of a traceback table:

version Eight-bit field. This defines the type code for the
table. The only currently defined value is zero.

lang Eight-bit field. This defines the source language for
the compiler that generated the code for which this
traceback table applies. The default values are as
follows:

C 0
FORTRAN 1
Pascal 2
Ada 3
PL/1 4
Basic 5
LISP 6
COBOL 7
Modula2 8
C++ 9
RPG 10
PL.8,PLIX 11
Assembly 12
Java 13
Objective C 14

The codes 0xf to 0xfa are reserved. The codes 0xfb to
0xff are reserved for IBM.

globalink One-bit field. This field is set to 1 if this routine
is a special routine used to support the linkage
convention: a linkage function or a ._ptrgl function.
See the section Function Calls for more information.
These routines have unusual register usage and stack
format.

is_eprol One-bit field. This field is set to 1 if this routine
is an out-of-line prologue or epilogue function. See
the section Function Prologue and Epilogue for more
information. These routines have unusual register
usage and stack format.

has_tboff One-bit field. This field is set to 1 if the offset of
the traceback table from the start of the function is
stored in the tb_offset field.

int_proc One-bit field. This field is set to 1 if this function

20

Chapter 3. Low Level System Information

is a stackless leaf function that does not have a
separate stack frame.

has_ctl One-bit field. This field is set to 1 if ctl_info is
provided.

tocless One-bit field. This field is set to 1 if this function
does not have a TOC. For example, a stackless leaf
assembly language routine with no references to
external objects.

fp_present One-bit field. This field is set to 1 if the function
uses floating-point processor instructions.

log_abort One-bit field. Reserved.

int_handl One-bit field. Reserved.

name_present One-bit field. This field is set to 1 if the name for
the procedure is present following the traceback field,
as determined by the name_len and name fields.

uses_alloca One-bit field. This field is set to 1 if the procedure
performs dynamic stack allocation. To address their
local variables, these procedures require a different
register to hold the stack pointer value. This
register may be chosen by the compiler, and must be
indicated by setting the value of the alloc_reg field.

cl_dis_inv Three-bit field. Reserved.

saves_cr One-bit field. This field is set to 1 if the function
saves the CR in the CR save area.

saves_lr One-bit field. This field is set to 1 if the function
saves the LR in the LR save area.

stores_bc One-bit field. This field is set to 1 if the function
saves the back chain (the SP of its caller) in the
stack frame header.

fixup One-bit field. This field is set to 1 if the link
editor replaced the original instruction by a branch
instruction to a special fixup instruction sequence.

fp_saved Six-bit field. This field is set to the number of
non-volatile floating point registers that the function
saves. The last register saved is always f31, so, for
example, a value of 2 in this field indicates that f30
and f31 are saved.

has_vec_info One-bit field. This field is set to 1 if the procedure
saves non-volatile vector registers in the vector

21

Chapter 3. Low Level System Information

register save area, saves vrsave in the VRSAVE word,
specifies the number of vector parameters, or uses VMX
instructions.

spare4 One-bit field. Reserved.

gpr_saved Six-bit field. This field is set to the number of
non-volatile general registers that the function
saves. As with fp_saved, the last register saved is
always r31.

fixedparms Eight-bit field. This field is set to the number of
fixed point parameters.

floatparms Seven-bit field. This field is set to the number of
floating point parameters.

parmsonstk One-bit field. This field is set to 1 if all of the
parameters are placed in the parameter save area.

Note: If either fixedparms or floatparms is set to a non-zero value, the parminfo field exists.

A debugger can use the fixedparms, floatparms, and parmsonstk field to support displaying the
parameters passed to a function. They specify the number of parameters passed in the general
registers and the number passed in the floating point registers; they also specify whether the
parameters are stored in the parameter save area. The parameters are stored in the parameter save
area if the number of parameters is variable, or if the address of one of the parameters is taken, or if
the compiler always stores the parameters at the optimization level of the compilation. If either the
fixedparms or floatparms field is set to a non-zero value, then the next field, parminfo, can be used
by a debugger to determine the relative order and types of the parameters.

3.3.2. Optional Fields

The following are the optional fields of a traceback table:

parminfo Unsigned int. This field is only present if either
fixedparms or floatparms is set to a non-zero value.
It can be used by a debugger to determine which
registers were used to pass parameters to the routine
and to determine the layout of the parameter save
area. This word is interpreted from left to right, as
follows:

bit is 0: the corresponding parameter is a fixed
point parameter passed in a general register or a
single doubleword in the parameter save area.

bit is 1: the corresponding parameter is a floating
point parameter, and the following bit determines
whether the parameter is single precision (the

22

Chapter 3. Low Level System Information

following bit is 0) or double precision (the
following bit is 1).

Note: Since this field is only 32 bits long, there is a
limit to how many parameters can be described. This
limit is in the range of 16 to 32 parameters depending
upon the type of the parameters. Note that it takes
two bits to describe a floating point parameter and one
bit for each non floating point parameter.

tb_offset Unsigned int. This word is only present if the
has_tboff field is set to 1. It holds the length of
the function code.

hand_mask Int. Reserved.

ctl_info Int. This word is only present if the has_ctl field is
set to 1. It gives the number of controlled automatic
anchor blocks defined for this procedure. If an
exception handler is unwinding the stack to restart
some earlier function, the the controlled automatic
storage must be released. Controlled automatic storage
is used by PL/1 and PL.8.

ctl_info_disp Int[*]. This field is only present if the has_ctl
field is set to 1. The ctl_info field indicates the
number of words. Each word is the displacement to the
location of the information.

name_len Short. This field is only present if the name_present
field is set to 1. It is the length of the function
name that immediately follows this field.

name char[*]. This field is only present if the
name_present field is set to 1. The name_len field
indicates the number of characters. The name is in
seven-bit ASCII, and is not delimited by a null
character.

alloca_reg Char. This field is only present if the uses_alloca
bit is set to 1. It holds the register number that is
used as the base for variable accesses.

vr_saved Six-bit field. This field is set to the number of
non-volatile floating point registers that the function
saves. The last register saved is always vr31, so, for
example, a value of 2 in this field indicates that vr30
and vr31 are saved.

saves_vrsave One-bit field. This field is set to 1 if the VRSAVE
word in the register save area must be used to restore
the prior value before returning from this procedure.

23

Chapter 3. Low Level System Information

has_varargs One-bit field. This field is set to 1 if this function
has a variable argument list.

vectorparms Seven-bit field. This field records the number of vector
parameters. This field must be non-zero for a procedure
with vector parameters that does not have a variable
argument list. Otherwise parmsonstk must be set.

vec_present One-bit field. This field is set to 1 if VMX
instructions are performed within the procedure.

3.4. Process Initialization

This section describes the machine state that exec creates for "infant" processes, including argument
passing, register usage, and stack frame layout. Programming language systems use this initial program
state to establish a standard environment for their application programs. For example, a C program
begins executing at a function named main, conventionally declared as follows:

extern int main (int argc, char *argv[], char *envp[]);

Briefly, argc is a non-negative argument count; argv is an array of argument strings, with argv[argc] ==
0; and envp is an array of environment strings, also terminated by a NULL pointer.

Although this section does not describe C program initialization, it gives the information necessary to
implement the call to main or to the entry point for a program in any other language.

3.4.1. Registers

When a process is first entered (from an exec(BA_OS) system call), the contents of registers other than
those listed below are unspecified. Consequently, a program that requires registers to have specific values
must set them explicitly during process initialization. It should not rely on the operating system to set all
registers to 0. Following are the registers whose contents are specified:

r1

The initial stack pointer, aligned to a quadword boundary and pointing to a word containing a
NULL pointer.

r2

The initial TOC pointer register value, obtained via the function descriptor pointed at by the e_entry
field in the ELF header. For more information on function decscriptors, see Section 3.2.5. For more
information on the ELF Header, see Section 4.1.

24

Chapter 3. Low Level System Information

r3

Contains argc, the number of arguments.

r4

Contains argv, a pointer to the array of argument pointers in the stack. The array is immediately
followed by a NULL pointer. If there are no arguments, r4 points to a NULL pointer.

r5

Contains envp, a pointer to the array of environment pointers in the stack. The array is immediately
followed by a NULL pointer. If no environment exists, r5 points to a NULL pointer .

r6

Contains a pointer to the auxiliary vector. The auxiliary vector shall have at least one member, a
terminating entry with an a_type of AT_NULL (see below).

r7

Contains a termination function pointer. If r7 contains a nonzero value, the value represents a
function pointer that the application should register with atexit(BA_OS). If r7 contains zero, no
action is required.

fpscr

Contains 0, specifying "round to nearest" mode, IEEE Mode, and the disabling of floating-point
exceptions.

3.4.2. Process Stack

Every process has a stack, but the system defines no fixed stack address. Furthermore, a program’s stack
address can change from one system to another, and even from one process invocation to another. Thus
the process initialization code must use the stack address in general purpose register r1. Data in the stack
segment at addresses below the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one application program to
another, the auxiliary vector conveys information from the operating system to the program. This vector
is an array of structures, defined as follows:

typedef struct
{
long a_type;
union
{
long a_val;
void *a_ptr;
void (*a_fcn)();

} a_un;
} auxv_t;

25

Chapter 3. Low Level System Information

Name Value a_un field

AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_HWCAP 16 a_val
AT_DCACHEBSIZE 19 a_val
AT_ICACHEBSIZE 20 a_val
AT_UCACHEBSIZE 21 a_val

AT_NULL

The auxiliary vector has no fixed length; instead an entry of this type denotes the end of the vector.
The corresponding value of a_un is undefined.

AT_IGNORE

This type indicates the entry has no meaning. The corresponding value of a_un is undefined.

AT_EXECFD

As Chapter 5 in the System V ABI describes, exec may pass control to an interpreter program.
When this happens, the system places either an entry of type AT_EXECFD or one of type
AT_PHDR in the auxiliary vector. The entry for type AT_EXECFD uses the a_val member to
contain a file descriptor open to read the application program’s object file.

AT_PHDR

Under some conditions, the system creates the memory image of the application program before
passing control to an interpreter program. When this happens, the a_ptr member of the AT_PHDR
entry tells the interpreter where to find the program header table in the memory image. If the
AT_PHDR entry is present, entries of types AT_PHENT, AT_PHNUM, and AT_ENTRY must also
be present. See the section Program Header in Chapter 5 of the System V ABI and Chapter 5 of this
processor supplement for more information about the program header table.

AT_PHENT

The a_val member of this entry holds the size, in bytes, of one entry in the program header table to
which the AT_PHDR entry points.

AT_PHNUM

The a_val member of this entry holds the number of entries in the program header table to which
the AT_PHDR entry points.

26

Chapter 3. Low Level System Information

AT_PAGESZ

If present, this entry’s a_val member gives the system page size in bytes. The same information is
also available through the sysconf system call.

AT_BASE

The a_ptr member of this entry holds the base address at which the interpreter program was loaded
into memory. See the section Program Header in Chapter 5 of the System V ABI for more
information about the base address.

AT_FLAGS

If present, the a_val member of this entry holds 1-bit flags. Bits with undefined semantics are set to
zero.

AT_ENTRY

The a_ptr member of this entry holds the entry point of the application program to which the
interpreter program should transfer control.

AT_DCACHEBSIZE

The a_val member of this entry gives the data cache block size for processors on the system on
which this program is running. If the processors have unified caches, AT_DCACHEBSIZE is the
same as AT_UCACHEBSIZE.

AT_ICACHEBSIZE

The a_val member of this entry gives the instruction cache block size for processors on the system
on which this program is running. If the processors have unified caches, AT_DCACHEBSIZE is the
same as AT_UCACHEBSIZE.

AT_UCACHEBSIZE

The a_val member of this entry is zero if the processors on the system on which this program is
running do not have a unified instruction and data cache. Otherwise, it gives the cache block size.

AT_HWCAP

The a_val member of this entry is bit map of hardware capabilities. Some bit mask values include:

PPC_FEATURE_32 0x80000000 /* Always set for powerpc64 */
PPC_FEATURE_64 0x40000000 /* Always set for powerpc64 */
PPC_FEATURE_HAS_ALTIVEC 0x10000000
PPC_FEATURE_HAS_FPU 0x08000000
PPC_FEATURE_HAS_MMU 0x04000000
PPC_FEATURE_UNIFIED_CACHE 0x01000000

Other auxiliary vector types are reserved. No flags are currently defined for AT_FLAGS on the 64-bit
PowerPC Architecture.

When a process receives control, its stack holds the arguments, environment, and auxiliary vector from
exec. Argument strings, environment strings, and the auxiliary information appear in no specific order

27

Chapter 3. Low Level System Information

within the information block; the system makes no guarantees about their relative arrangement. The
system may also leave an unspecified amount of memory between the null auxiliary vector entry and the
beginning of the information block. The back chain word of the first stack frame contains a null pointer
(0).

3.5. Coding Examples

This section describes example code sequences for fundamental operations such as calling functions,
accessing static objects, and transferring control from one part of a program to another. Previous sections
discussed how a program may use the machine or the operating system, and they specified what a
program may and may not assume about the execution environment. Unlike previous material, the
information in this section illustrates how operations may be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages may use the same
conventions displayed below, but failure to do so does not prevent a program from conforming to the
ABI.

64-bit PowerPC code is normally position independent. That is, the code is not tied to a specific load
address, and may be executed properly at various positions in virtual memory. Although it is possible to
write position dependent code on the 64-bit PowerPC, these code examples only show position
independent code.

Note: The examples below show code fragments with various simplifications. They are intended to
explain addressing modes, not to show optimal code sequences or to reproduce compiler output.

3.5.1. Code Model Overview

When the system creates a process image, the executable file portion of the process has fixed addresses
and the system chooses shared object library virtual addresses to avoid conflicts with other segments in
the process. To maximize text sharing, shared objects conventionally use position-independent code, in
which instructions contain no absolute addresses. Shared object text segments can be loaded at various
virtual addresses without having to change the segment images. Thus multiple processes can share a
single shared object text segment, even if the segment resides at a different virtual address in each
process.

Position-independent code relies on two techniques:

• Control transfer instructions hold addresses relative to the effective address (EA) or use registers that
hold the transfer address. An EA-relative branch computes its destination address in terms of the
current EA, not relative to any absolute address.

28

Chapter 3. Low Level System Information

• When the program requires an absolute address, it computes the desired value. Instead of embedding
absolute addresses in instructions (in the text segment), the compiler generates code to calculate an
absolute address (in a register or in the stack or data segment) during execution.

Because the 64-bit PowerPC Architecture provides EA-relative branch instructions and also branch
instructions using registers that hold the transfer address, compilers can satisfy the first condition easily.

A "Global Offset Table," or GOT, provides information for address calculation. Position independent
object files (executable and shared object files) have a table in their data segment that holds addresses.
When the system creates the memory image for an object file, the table entries are relocated to reflect the
absolute virtual address as assigned for an individual process. Because data segments are private for each
process, the table entries can change--unlike text segments, which multiple processes share.

3.5.2. The TOC section

ELF processor-specific supplements normally define a GOT ("Global Offset Table") section used to hold
addresses for position independent code. Some ELF processor-specific supplements, including the 32-bit
PowerPC Processor Supplement, define a small data section. The same register is sometimes used to
address both the GOT and the small data section.

The 64-bit PowerOpen ABI defines a TOC ("Table of Contents") section. The TOC combines the
functions of the GOT and the small data section.

This ABI uses the term TOC. The TOC section defined here is intended to be similar to that defined by
the 64-bit PowerOpen ABI. The TOC section contains a conventional ELF GOT, and may optionally
contain a small data area. The GOT and the small data area may be intermingled in the TOC section.

The TOC section is accessed via the dedicated TOC pointer register, r2. Accesses are normally made
using the register indirect with immediate index mode supported by the 64-bit PowerPC processor,
which limits a single TOC section to 65,536 bytes, enough for 8,192 GOT entries.

The value of the TOC pointer register is called the TOC base. The TOC base is typically the first address
in the TOC plus 0x8000, thus permitting a full 64 Kbyte TOC.

A relocatable object file must have a single TOC section and a single TOC base. However, when the link
editor combines relocatable object files to form a single executable or shared object, it may create
multiple TOC sections. The link editor is responsible for deciding how to associate TOC sections with
object files. Normally the link editor will only create multiple TOC sections if it has more than 65,536
bytes to store in a TOC.

All link editors which support this ABI must support a single TOC section, but support for multiple TOC
sections is optional.

29

Chapter 3. Low Level System Information

Each shared object will have a separate TOC or TOCs.

Note: This ABI does not actually restrict the size of a TOC section. It is permissible to use a larger
TOC section, if code uses a different addressing mode to access it. The AIX link editor, in particular,
does not support multiple TOC sections, but instead inserts call out code at link time to support
larger TOC sections.

3.5.3. TOC Assembly Language Syntax

Desire for compatibility with both ELF systems and PowerOpen systems suggests two different
assembly language syntaxes to be used when referring to the TOC section. This syntax is not part of the
official ABI. The description here is only for information purposes. Particular assemblers may support
both syntaxes, only one, or neither.

The ELF syntax uses @got and @toc. The syntax SYMBOL@got refers to the offset in the TOC at
which the value of SYMBOL (that is, the address of the variable whose name is SYMBOL) is stored,
assuming the offset is no larger than 16 bits. For example,

ld r3,x@got(r2)

SYMBOL@got will be an offset within the global offset table, which as noted above, forms part of the
TOC section.

Ordinarily the link editor will avoid having a TOC, and hence a GOT, larger than 64 Kbytes, perhaps by
support multiple TOC sections, or via some other technique. However, for flexibility, there is a syntax for
32 bit offsets to the GOT. The syntaxes SYMBOL@got@ha, SYMBOL@got@h, and
SYMBOL@got@l refer to the high adjusted, high, and low parts of the GOT offset. (The meaning of
“high adjusted” is explained in Section 4.5.1).

The syntax SYMBOL@toc refers to the value (SYMBOL - base (TOC)), where base (TOC) represents
the TOC base for the current object file. This provides the address of the variable whose name is
SYMBOL, as an offset from the TOC base. This assumes that the variable may be found within the TOC,
and that its offset is no larger than 16 bits.

As with the GOT, the syntaxes SYMBOL@toc@ha, SYMBOL@toc@h, and SYMBOL@toc@l refer to
the high adjusted, high, and low parts of the TOC offset.

The syntax SYMBOL@got@plt may be used to refer to the offset in the TOC of a procedure linkage
table entry stored in the global offset table. The corresponding syntaxes SYMBOL@got@plt@ha,
SYMBOL@got@plt@h, and SYMBOL@got@plt@l are also defined.

30

Chapter 3. Low Level System Information

Note: If X is a variable stored in the TOC, then X@got will be the offset within the TOC of a
doubleword whose value is X@toc.

The special symbol .TOC.@tocbase is used to represent the TOC base for the current object file. The
following might appear in a function descriptor definition:

.quad .TOC.@tocbase

The PowerOpen syntax is more complex. It is derived from the different representation of the TOC
section in XCOFF.

Assembly code first uses the .toc pseudo-op to enter the TOC section. It then uses a label to name a
particular element. It then uses the .tc pseudo-op to indicate which GOT entry it wishes to name. Later in
the code, the label is used with the TOC register to load the address. For example:

.toc
.L1:

.tc x[TC],x

...
ld r3,.L1(r2)

This creates a GOT entry for the variable x, and names that entry .L1 for the remainder of the assembly.
The effect is the same as the single ELF-style instruction above.

The special value TOC[tc0] is used to represent the TOC base for the current object file:

.quad TOC[tc0]

The PowerOpen syntax permits other data to be stored in the .toc section. The assembler will output this
data in a .toc section, and convert references as though its address were specified with @toc rather than
@got.

There is a significant difference in representation of the TOC in this ABI and in the 64-bit PowerOpen
ABI. Relocatable object files created using the 64-bit PowerOpen ABI have a .toc section which contains
real data. The link editor uses garbage collection to discard duplicate information including in particular
TOC entries which refer to the same variable. In this ABI, relocatable object files do not contain .got
sections holding real data. Instead, the GOT is created by the link editor based on relocations created by
@got references. This ABI does not require the link editor to support garbage collection. This ABI does
permit real data to exist in .toc sections, but this data will never be referred to directly by instructions
which use @got references. @got references always refer to the GOT which is created by the link editor
when creating an executable or a shared object.

31

Chapter 3. Low Level System Information

3.5.4. Function Prologue and Epilogue

This section describes functions’ prologue and epilogue code. A function’s prologue establishes a stack
frame, if necessary, and may save any nonvolatile registers it uses. A function’s epilogue generally
restores registers that were saved in the prologue code, restores the previous stack frame, and returns to
the caller. Except for the rules below, this ABI does not mandate predetermined code sequences for
function prologues and epilogues. However, the following rules, which permit reliable call chain
backtracing, shall be followed:

• If the function uses any nonvolatile general registers, it shall save them in the general register save
area. If the function does not require a stack frame, this may be done using negative stack offsets from
the caller’s stack pointer.

• If the function uses any nonvolatile floating point registers, it shall save them in the floating point
register save area. If the function does not require a stack frame, this may be done using negative stack
offsets from the caller’s stack pointer.

• Before a function calls any other function, it shall establish its own stack frame, whose size shall be a
multiple of 16 bytes, and shall save the link register at the time of entry in the LR save area of its
caller’s stack frame.

• If the function uses any nonvolatile fields in the CR, it shall save the CR in the CR save area of the
caller’s stack frame.

• If a function establishes a stack frame, it shall update the back chain word of the stack frame
atomically with the stack pointer (r1) using one of the "Store Double Word with Update" instructions.

• For small (no larger than 32 Kbytes) stack frames, this may be accomplished with a "Store Double
Word with Update" instruction with an appropriate negative displacement.

• For larger stack frames, the prologue shall load a volatile register with the two’s complement of the
size of the frame (computed with addis and addi or ori instructions) and issue a "Store Double Word
with Update Indexed" instruction.

• When a function deallocates its stack frame, it must do so atomically, either by loading the stack
pointer (r1) with the value in the back chain field or by incrementing the stack pointer by the same
amount by which it has been decremented.

In-line code may be used to save or restore nonvolatile general or floating-point registers that the
function uses. However, if there are many registers to be saved or restored, it may be more efficient to
call one of the system subroutines described below.

3.5.5. Register Saving and Restoring Functions

The register saving and restoring functions described in this section use nonstandard calling conventions
which ordinarily require them to be statically linked into any executable or shared object modules in
which they are used. Nevertheless, unlike 32-bit PowerPC ELF, these functions are considered part of the

32

Chapter 3. Low Level System Information

official ABI. In particular, the link editor is permitted to treat calls to these functions specially, such as by
changing a call to one of these function into a call to an absolute address as in the PowerOpen ABI.

As shown in The Stack Frame section above, the general register save area is not at a fixed offset from
either the caller’s SP or the callee’s SP. The floating point register save area starts at a fixed position from
the caller’s SP on entry to the callee, but the position of the general register save area depends upon the
number of floating point registers to be saved. Thus it is impossible to write a general register saving
routine which uses fixed offsets from the SP.

If the routine needs to save both general and floating point registers, code can use r12 as the pointer for
saving and restoring the general purpose registers. (r12 is a volatile register but does not contain input
parameters). This leads to the definition of multiple register save and restore routines, each of which
saves or restores M floating point registers and N general registers.

3.5.6. Saving General Registers Only

For a function that saves/restores N general registers and no floating point registers, the saving can be
done using individual store/load instructions or by calling system provided routines as shown below.

In the following, the number of registers being saved is N, and <32-N> is the first register number to be
saved/restored. All registers from <32-N> up to 31, inclusive, are saved/restored.

FRAME_SIZE is the size of the stack frame, here assumed to be less than 32 Kbytes.

mflr r0 # Move LR into r0
bl _savegpr0_<32-N> # Call routine to save general registers
stdu r1,(-FRAME_SIZE)(r1) # Create stack frame
...
(save CR if necessary)
... # Body of function
...
(reload CR if necessary)
...
(reload caller’s SP into r1)
b _restgpr0_<32-N> # Restore registers and return

3.5.7. Saving General Registers and Floating Point Registers

For a function that saves/restores N general registers and M floating point registers, the saving can be
done using individual store/load instructions or by calling system provided routines as shown below.

mflr r0 # Move LR into r0
subi r12,r1,8*M # Set r12 to general reg save area

33

Chapter 3. Low Level System Information

bl _savegpr1_<32-N> # Call routine to save general registers
bl _savefpr_<32-M> # Call routine to save floating point regs
stdu r1,(-FRAME_SIZE)(r1) # Create stack frame
...
(save CR if necessary)
... # Body of function
...
(reload CR if necessary)
...
(reload caller’s SP into r1)
subi r12,r1,8*M # Set r12 to general reg save area
bl _restgpr1_<32-N> # Restore general registers
b _restfpr_<32-M> # Restore floating point regs and return

3.5.8. Saving Floating Point Registers Only

For a function that saves/restores M floating point registers and no general registers, the saving can be
done using individual store/load instructions or by calling system provided routines as shown below.

mflr r0 # Move LR into r0
bl _savefpr_<32-M> # Call routine to save general registers
stdu r1,(-FRAME_SIZE)(r1) # Create stack frame
...
(save CR if necessary)
... # Body of function
...
(reload CR if necessary)
...
(reload caller’s SP into r1)
b _restfpr_<32-M> # Restore registers and return

3.5.9. Save and Restore Services

Systems must provide three sets of routines, which may be implemented as multiple entry point routines
or as individual routines. They must adhere to the following rules.

Each _savegpr0_N routine saves the general registers from rN to r31, inclusive. Each routine also saves
the LR. When the routine is called, r1 must point to the start of the general register save area, and r0 must
contain the value of LR on function entry.

The _restgpr0_N routines restore the general registers from rN to r31, and then return to the caller. When
the routine is called, r1 must point to the start of the general register save area.

Here is a sample implementation of _savegpr0_N and _restgpr0_N.

34

Chapter 3. Low Level System Information

_savegpr0_14: std r14,-144(r1)
_savegpr0_15: std r15,-136(r1)
_savegpr0_16: std r16,-128(r1)
_savegpr0_17: std r17,-120(r1)
_savegpr0_18: std r18,-112(r1)
_savegpr0_19: std r19,-104(r1)
_savegpr0_20: std r20,-96(r1)
_savegpr0_21: std r21,-88(r1)
_savegpr0_22: std r22,-80(r1)
_savegpr0_23: std r23,-72(r1)
_savegpr0_24: std r24,-64(r1)
_savegpr0_25: std r25,-56(r1)
_savegpr0_26: std r26,-48(r1)
_savegpr0_27: std r27,-40(r1)
_savegpr0_28: std r28,-32(r1)
_savegpr0_29: std r29,-24(r1)
_savegpr0_30: std r30,-16(r1)
_savegpr0_31: std r31,-8(r1)

std r0, 16(r1)
blr

_restgpr0_14: ld r14,-144(r1)
_restgpr0_15: ld r15,-136(r1)
_restgpr0_16: ld r16,-128(r1)
_restgpr0_17: ld r17,-120(r1)
_restgpr0_18: ld r18,-112(r1)
_restgpr0_19: ld r19,-104(r1)
_restgpr0_20: ld r20,-96(r1)
_restgpr0_21: ld r21,-88(r1)
_restgpr0_22: ld r22,-80(r1)
_restgpr0_23: ld r23,-72(r1)
_restgpr0_24: ld r24,-64(r1)
_restgpr0_25: ld r25,-56(r1)
_restgpr0_26: ld r26,-48(r1)
_restgpr0_27: ld r27,-40(r1)
_restgpr0_28: ld r28,-32(r1)
_restgpr0_29: ld r0, 16(r1)

ld r29,-24(r1)
mtlr r0
ld r30,-16(r1)
ld r31,-8(r1)
blr

_restgpr0_30: ld r30,-16(r1)
_restgpr0_31: ld r0, 16(r1)

ld r31,-8(r1)
mtlr r0
blr

Each _savegpr1_N routine saves the general registers from rN to r31, inclusive. When the routine is
called, r12 must point to the start of the general register save area.

35

Chapter 3. Low Level System Information

The _restgpr1_N routines restore the general registers from rN to r31. When the routine is called, r12
must point to the start of the general register save area.

Here is a sample implementation of _savegpr1_N and _restgpr1_N.

_savegpr1_14: std r14,-144(r12)
_savegpr1_15: std r15,-136(r12)
_savegpr1_16: std r16,-128(r12)
_savegpr1_17: std r17,-120(r12)
_savegpr1_18: std r18,-112(r12)
_savegpr1_19: std r19,-104(r12)
_savegpr1_20: std r20,-96(r12)
_savegpr1_21: std r21,-88(r12)
_savegpr1_22: std r22,-80(r12)
_savegpr1_23: std r23,-72(r12)
_savegpr1_24: std r24,-64(r12)
_savegpr1_25: std r25,-56(r12)
_savegpr1_26: std r26,-48(r12)
_savegpr1_27: std r27,-40(r12)
_savegpr1_28: std r28,-32(r12)
_savegpr1_29: std r29,-24(r12)
_savegpr1_30: std r30,-16(r12)
_savegpr1_31: std r31,-8(r12)

blr

_restgpr1_14: ld r14,-144(r12)
_restgpr1_15: ld r15,-136(r12)
_restgpr1_16: ld r16,-128(r12)
_restgpr1_17: ld r17,-120(r12)
_restgpr1_18: ld r18,-112(r12)
_restgpr1_19: ld r19,-104(r12)
_restgpr1_20: ld r20,-96(r12)
_restgpr1_21: ld r21,-88(r12)
_restgpr1_22: ld r22,-80(r12)
_restgpr1_23: ld r23,-72(r12)
_restgpr1_24: ld r24,-64(r12)
_restgpr1_25: ld r25,-56(r12)
_restgpr1_26: ld r26,-48(r12)
_restgpr1_27: ld r27,-40(r12)
_restgpr1_28: ld r28,-32(r12)
_restgpr1_29: ld r29,-24(r12)
_restgpr1_30: ld r30,-16(r12)
_restgpr1_31: ld r31,-8(r12)

blr

Each _savefpr_M routine saves the floating point registers from fM to f31, inclusive. When the routine is
called, r1 must point to the start of the floating point register save area, and r0 must contain the value of
LR on function entry.

36

Chapter 3. Low Level System Information

The _restfpr_M routines restore the floating point registers from fM to f31. When the routine is called, r1
must point to the start of the floating point register save area.

Here is a sample implementation of _savepr_M and _restfpr_M.

_savefpr_14: stfd f14,-144(r1)
_savefpr_15: stfd f15,-136(r1)
_savefpr_16: stfd f16,-128(r1)
_savefpr_17: stfd f17,-120(r1)
_savefpr_18: stfd f18,-112(r1)
_savefpr_19: stfd f19,-104(r1)
_savefpr_20: stfd f20,-96(r1)
_savefpr_21: stfd f21,-88(r1)
_savefpr_22: stfd f22,-80(r1)
_savefpr_23: stfd f23,-72(r1)
_savefpr_24: stfd f24,-64(r1)
_savefpr_25: stfd f25,-56(r1)
_savefpr_26: stfd f26,-48(r1)
_savefpr_27: stfd f27,-40(r1)
_savefpr_28: stfd f28,-32(r1)
_savefpr_29: stfd f29,-24(r1)
_savefpr_30: stfd f30,-16(r1)
_savefpr_31: stfd f31,-8(r1)

std r0, 16(r1)
blr

_restfpr_14: lfd f14,-144(r1)
_restfpr_15: lfd f15,-136(r1)
_restfpr_16: lfd f16,-128(r1)
_restfpr_17: lfd f17,-120(r1)
_restfpr_18: lfd f18,-112(r1)
_restfpr_19: lfd f19,-104(r1)
_restfpr_20: lfd f20,-96(r1)
_restfpr_21: lfd f21,-88(r1)
_restfpr_22: lfd f22,-80(r1)
_restfpr_23: lfd f23,-72(r1)
_restfpr_24: lfd f24,-64(r1)
_restfpr_25: lfd f25,-56(r1)
_restfpr_26: lfd f26,-48(r1)
_restfpr_27: lfd f27,-40(r1)
_restfpr_28: lfd f28,-32(r1)
_restfpr_29: ld r0, 16(r1)

lfd f29,-24(r1)
mtlr r0
lfd f30,-16(r1)
lfd f31,-8(r1)
blr

_restfpr_30: lfd f30,-16(r1)
_restfpr_31: ld r0, 16(r1)

lfd f31,-8(r1)
mtlr r0

37

Chapter 3. Low Level System Information

blr

Each _savevr_M routine saves the vector registers from vM to v31, inclusive. When the routine is called,
r0 must point to the word just beyond the end of the vector register save area. On return the value of r0 is
unchanged while r12 may be modified.

The _restvr_M routines restore the vector registers from vM to v31. When the routine is called, r0 must
point to the word just beyond the end of the vector register save area. On return the value of r0 is
unchanged while r12 may be modified.

Here is a sample implementation of _savevr_M and _restvr_M.

_savevr_20: addi r12,r0,-192
stvx v20,r12,r0

_savevr_21: addi r12,r0,-176
stvx v21,r12,r0

_savevr_22: addi r12,r0,-160
stvx v22,r12,r0

_savevr_23: addi r12,r0,-144
stvx v23,r12,r0

_savevr_24: addi r12,r0,-128
stvx v24,r12,r0

_savevr_25: addi r12,r0,-112
stvx v25,r12,r0

_savevr_26: addi r12,r0,-96
stvx v26,r12,r0

_savevr_27: addi r12,r0,-80
stvx v27,r12,r0

_savevr_28: addi r12,r0,-64
stvx v28,r12,r0

_savevr_29: addi r12,r0,-48
stvx v29,r12,r0

_savevr_30: addi r12,r0,-32
stvx v30,r12,r0

_savevr_31: addi r12,r0,-16
stvx v31,r12,r0
blr

_restvr_20: addi r12,r0,-192
lvx v20,r12,r0

_restvr_21: addi r12,r0,-176
lvx v21,r12,r0

_restvr_22: addi r12,r0,-160
lvx v22,r12,r0

_restvr_23: addi r12,r0,-144
lvx v23,r12,r0

_restvr_24: addi r12,r0,-128
lvx v24,r12,r0

_restvr_25: addi r12,r0,-112

38

Chapter 3. Low Level System Information

lvx v25,r12,r0
_restvr_26: addi r12,r0,-96

lvx v26,r12,r0
_restvr_27: addi r12,r0,-80

lvx v27,r12,r0
_restvr_28: addi r12,r0,-64

lvx v28,r12,r0
_restvr_29: addi r12,r0,-48

lvx v29,r12,r0
_restvr_30: addi r12,r0,-32

lvx v30,r12,r0
_restvr_31: addi r12,r0,-16

lvx v31,r12,r0
blr

3.5.10. Data Objects

This section describes only objects with static storage duration. It excludes stack-resident objects
because programs always compute their virtual addresses relative to the stack or frame pointers.

In the 64-bit PowerPC Architecture, only load and store instructions access memory. Because 64-bit
PowerPC instructions cannot hold 64-bit addresses directly, a program normally computes an address
into a register and accesses memory through the register.

It is possible to build addresses using absolute code which puts symbol addresses into instructions.
However, the difficulty of building a 64-bit address means that 64-bit PowerPC code normally loads an
address out of a memory location in the TOC section. Combining the TOC offset of the symbol with the
TOC address in register r2 gives the absolute address of the TOC entry holding the desired address.

The following figures show sample assembly language equivalents to C language code. The @got syntax
is explained above, in the section TOC Assembly Language Syntax.

Load and Store; variables are not in TOC:

C Assembly

extern int src;
extern int dst;
extern int *ptr;

dst = src;
ld r6,src@got(r2)
ld r7,dst@got(r2)
lwz r0,0(r6)
stw r0,0(r7)

39

Chapter 3. Low Level System Information

ptr = &dst;
ld r0,dst@got(r2)
ld r7,ptr@got(r2)
std r0,0(r7)

*ptr = src;
ld r6,src@got(r2)
ld r7,ptr@got(r2)
lwz r0,0(r6)
ld r7,0(r7)
stw r0,0(r7)

The next example shows the same code assuming that the variables are all stored in the TOC. Shared
objects normally can not assume that globally visible variables are stored in the TOC. If they did, it
would be impossible for the variable references to be redirected to overriding variables in the main
program. Therefore, shared objects should normally always use the type of code shown above.

Load and Store; variables in TOC:

C Assembly

extern int src;
extern int dst;
extern int *ptr;

dst = src;
lwz r0,src@toc(r2)
stw r0,dst@toc(r2)

ptr = &dst;
la r0,dst@toc(r2)
std r0,ptr@toc(r2)

*ptr = src;
lwz r0,src@toc(r2)
ld r7,ptr@toc(r2)
stw r0,0(r7)

3.5.11. Function Calls

Programs use the 64-bit PowerPC bl instruction to make direct function calls. The bl instruction must be
followed by a nop instruction. For PowerOpen compatibility, the nop instruction must be:

ori r0,r0,0

For PowerOpen compatibility, the link editor must also accept these instructions as valid nop instructions:

40

Chapter 3. Low Level System Information

cror 15,15,15
cror 31,31,31

In a relocatable object file, a direct function call should be made to the function descriptor symbol. The
link editor will resolve this to call the function entry point rather than branching to the descriptor. See
Section 3.2.5 for more information.

When the link editor is creating an executable or shared object, and it sees a function call followed by a
nop instruction, it determines whether the caller and the callee share the same TOC. If they do, it leaves
the nop instruction unchanged. If they do not, the link editor constructs a linkage function. The linkage
function loads the TOC register with the callee TOC and branches to the callee entry point. The link
editor modifies the bl instruction to branch to the linkage function, and modifies the nop instruction to be

ld r2,40(r1)

This will reload the TOC register from the TOC save area after the callee returns.

A bl instruction has a self-relative branch displacement that can reach 32 Mbytes in either direction.
Hence, the use of a bl instruction to effect a call within an executable or shared object file limits the size
of the executable or shared object file text segment.

If the callee is in a different shared object, a similar procedure of linkage code and a modified nop
instruction is used. In this case, the dynamic linker must complete the link by filling in the function
descriptor at run time. See Section 5.2.4 for more details.

Here is an example of the assembly code generated for a function call:

C Assembly

extern void func (void);
func ();

bl func
ori r0,r0,0

Here is an example of how the link editor transforms this code if the
callee has a different TOC than the caller:

C Assembly

extern void func (void);
func ();

bl <linkage_for_func>

ld r2,40(r1)

41

Chapter 3. Low Level System Information

Here is an example of the linkage code created by the link editor. Remember that func@got@plt
contains the address of the procedure linkage entry for func, which is a function descriptor. The function
descriptor holds the addresses of the function entry point and the function TOC base.

<linkage_for_func>:
ld r12,func@got@plt(r2)
std r2,40(r1)
ld r0,0(r12)
ld r2,8(r12)
mtctr r0
bctr

The value of a function pointer is the address of the function descriptor, not the address of the function
entry point itself.

C Assembly
extern void func (void);
extern void (*ptr) (void);
ptr = func;

ld r6,func@got(r2)
ld r7,ptr@got(r2)
std r6,0(r7)

(*ptr) ();
ld r6,ptr@got(r2)
ld r6,0(r6)
ld r0,0(r6)
std r2,40(r1)
mtctr r0
ld r2,8(r6)
bctrl
ld r2,40(r1)

Since most of the code sequence used for a call through a pointer is the same no matter what function
pointer is being used, it is also possible to do it by calling a function with an unusual calling convention
provided by a library. With this approach, efficiency requires that the function be linked in directly, and
not come from a shared library. The PowerOpen ABI uses a function named ._ptrgl for this purpose,
passing the function pointer value in r11, and it is recommended that this name and calling convention be
used as well when using this approach under ELF.

3.5.12. Branching

Programs use branch instructions to control their execution flow. As defined by the architecture, branch
instructions hold a self-relative value with a 64-Mbyte range, allowing a jump to locations up to 32
Mbytes away in either direction.

C Assembly
label:

42

Chapter 3. Low Level System Information

.L01:
...
goto label

b .L01

C switch statements provide multiway selection. When the case labels of a switch statement satisfy
grouping constraints, the compiler implements the selection with an address table. The following
example uses several simplifying conventions to hide irrelevant details:

• The selection expression resides in r12, and is of type int.

• The case label constants begin at zero.

• The case labels, the default, and the address table use assembly names .Lcasei, .Ldef, and .Ltab,
respectively.

C Assembly
switch (j)
{
case 0:
...

case 1:
...

case 3:
...

default:
...

}
cmplwi r12,4
bge .Ldef
bl .L1

.L1:
slwi r12,2
mflr r11
addi r12,r12,.Ltab-.L1
add r0,r12,r11
mtctr r0
bctr

.Ltab:
b .Lcase0
b .Lcase1
b .Ldef
b .Lcase3

3.5.13. Dynamic Stack Space Allocation

Unlike some other languages, C does not need dynamic stack allocation within a stack frame. Frames are
allocated dynamically on the program stack, depending on program execution, but individual stack
frames can have static sizes. Nonetheless, the architecture supports dynamic allocation for those
languages that require it. The mechanism for allocating dynamic space is embedded completely within a

43

Chapter 3. Low Level System Information

function and does not affect the standard calling sequence. Thus languages that need dynamic stack
frame sizes can call C functions, and vice versa.

Here is the stack frame before dynamic stack allocation:

High address

+-> Back chain
| Floating point register save area
| General register save area
| VRSAVE save word (32-bits)
| Alignment padding (4 or 12 bytes)
| Vector register save area (quadword aligned)
| Local variable space
| Parameter save area (SP + 48)
| TOC save area (SP + 40) --+
| link editor doubleword (SP + 32) |
| compiler doubleword (SP + 24) |--stack frame header
| LR save area (SP + 16) |
| CR save area (SP + 8) |

SP ---> +-- Back chain (SP + 0) --+

Low address

Here is the stack frame after dynamic stack allocation:

High address

+-> Back chain
| Floating point register save area
| General register save area
| VRSAVE save word (32-bits)
| Alignment padding (4 or 12 bytes)
| Vector register save area (quadword aligned)
| Local variable space
| -- Old parameter save area, now allocated space
| -- Old stack frame header, now allocated space
| -- More newly allocated space
| New parameter save area (SP + 48)
| New TOC save area (SP + 40)
| New link editor doubleword (SP + 32)
| New compiler doubleword (SP + 24)
| New LR save area (SP + 16)
| New CR save area (SP + 8)

SP ---> +-- New Back chain (SP + 0)

Low address

44

Chapter 3. Low Level System Information

The local variables area is used for storage of function data, such as local variables, whose sizes are
known to the compiler. This area is allocated at function entry and does not change in size or position
during the function’s activation.

The parameter save area is reserved for arguments passed in calls to other functions. See Section 3.2.3
for more information. Its size is also known to the compiler and can be allocated along with the fixed
frame area at function entry. However, the standard calling sequence requires that the parameter save
area begin at a fixed offset (48) from the stack pointer, so this area must move when dynamic stack
allocation occurs.

The stack frame header must also be at a fixed offset (0) from the stack pointer, so this area must also
move when dynamic stack allocation occurs.

Data in the parameter save area are naturally addressed at constant offsets from the stack pointer.
However, in the presence of dynamic stack allocation, the offsets from the stack pointer to the data in the
local variables area are not constant. To provide addressability, a frame pointer is established to locate
the local variables area consistently throughout the function’s activation.

Dynamic stack allocation is accomplished by "opening" the stack just above the parameter save area. The
following steps show the process in detail:

1. Sometime after a new stack frame is acquired and before the first dynamic space allocation, a new
register, the frame pointer, is set to the value of the stack pointer. The frame pointer is used for
references to the function’s local, non-static variables.

2. The amount of dynamic space to be allocated is rounded up to a multiple of 16 bytes, so that
quadword stack alignment is maintained.

3. The stack pointer is decreased by the rounded byte count, and the address of the previous stack
frame (the back chain) is stored at the word addressed by the new stack pointer. This shall be
accomplished atomically by using stdu rS,-length(r1) if the length is less than 32768 bytes, or by
using stdux rS,r1,rspace, where rS is the contents of the back chain word and rspace contains the
(negative) rounded number of bytes to be allocated.

Note: It is only strictly necessary to copy the back chain. The information in the parameter save area
is recreated for each function call. The information in the stack frame header, other than the back
chain, is only used by a called function. In some cases, a compiler may need to copy the TOC save
area as well, depending upon precisely how it generates linkage code.

The above process can be repeated as many times as desired within a single function activation. When it
is time to return, the stack pointer is set to the value of the back chain, thereby removing all dynamically
allocated stack space along with the rest of the stack frame. Naturally, a program must not reference the
dynamically allocated stack area after it has been freed.

45

Chapter 3. Low Level System Information

Even in the presence of signals, the above dynamic allocation scheme is "safe." If a signal interrupts
allocation, one of three things can happen:

• The signal handler can return. The process then resumes the dynamic allocation from the point of
interruption.

• The signal handler can execute a non-local goto or a jump. This resets the process to a new context in
a previous stack frame, automatically discarding the dynamic allocation.

• The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a consistent (though
possibly dead) process.

3.6. DWARF Definition

3.6.1. DWARF Release Number

This section defines the Debug With Arbitrary Record Format (DWARF) debugging format for the 64-bit
PowerPC processor family. The 64-bit PowerPC ABI does not define a debug format. However, all
systems that do implement DWARF shall use the following definitions.

DWARF is a specification developed for symbolic, source-level debugging. The debugging information
format does not favor the design of any compiler or debugger. For more information on DWARF, see the
documents cited in Chapter 1.

The DWARF definition requires some machine-specific definitions. The register number mapping needs
to be specified for the 64-bit PowerPC registers. In addition, the DWARF Version 2 specification requires
processor-specific address class codes to be defined.

3.6.2. DWARF Register Number Mapping

This table outlines the register number mapping for the 64-bit PowerPC processor family. Note that for
all special purpose registers, the number is simply 100 plus the SPR register number, as defined in the
64-bit PowerPC Architecture. Registers with an asterisk before their name are MPC601 chip-specific and
are not part of the generic 64-bit PowerPC chip architecture.

Register Name Number Abbreviation

General Register 0-31 0-31 r0-r31

46

Chapter 3. Low Level System Information

Floating Register 0-31 32-63 f0-f31

Condition Register 64 CR

Floating-Point Status and 65 FPSCR
Control Register

* MQ Register 100 MQ or SPR0

Fixed-Point Exception 101 XER or SPR1
Register

* Real Time Clock 104 RTCU or SPR4
Upper Register

* Real Time Clock 105 RTCL or SPR5
Lower Register

Link Register 108 LR or SPR8

Count Register 109 CTR or SPR9

For kernel debuggers, the mapping for all privileged registers is also defined in this table.

Register Name Number Abbreviation

Machine State Register 66 MSR

Segment Register 0-15 70-85 SR0-SR15

Data Storage Interrupt 118 DSISR or SPR18
Status Register

Data Address Register 119 DAR or SPR19

Decrementer 122 DEC or SPR22

Storage Description 125 SDR1 or SPR25
Register 1

Machine Status 126 SRR0 or SPR26
Save/Restore Register 0

Machine Status 127 SRR1 or SPR27
Save/Restore Register 1

Vector Save/Restore 356 VRSAVE or SPR256
Register

Software-use Special 372 SPRG0 or SPR272
Purpose Register 0

47

Chapter 3. Low Level System Information

Software-use Special 373 SPRG1 or SPR273
Purpose Register 1

Software-use Special 374 SPRG2 or SPR274
Purpose Register 2

Software-use Special 375 SPRG3 or SPR275
Purpose Register 3

Address Space Register 380 ASR or SPR280

External Access Register 382 EAR or SPR282

Time Base 384 TB or SPR284

Time Base Upper 385 TBU or SPR285

Processor Version Register 387 PVR or SPR287

Instruction BAT Register 628 IBAT0U or SPR528
0 Upper

Instruction BAT Register 629 IBAT0L or SPR529
0 Lower

Instruction BAT Register 630 IBAT1U or SPR530
1 Upper

Instruction BAT Register 631 IBAT1L or SPR531
1 Lower

Instruction BAT Register 632 IBAT2U or SPR532
2 Upper

Instruction BAT Register 633 IBAT2L or SPR533
2 Lower

Instruction BAT Register 634 IBAT3U or SPR534
3 Upper

Instruction BAT Register 635 IBAT3L or SPR535
3 Lower

Data BAT Register 0 Upper 636 DBAT0U or SPR536

Data BAT Register 0 Lower 637 DBAT0L or SPR537

Data BAT Register 1 Upper 638 DBAT1U or SPR538

Data BAT Register 1 Lower 639 DBAT1L or SPR539

Data BAT Register 2 Upper 640 DBAT2U or SPR540

48

Chapter 3. Low Level System Information

Data BAT Register 2 Lower 641 DBAT2L or SPR541

Data BAT Register 3 Upper 642 DBAT3U or SPR542

Data BAT Register 3 Lower 643 DBAT3L or SPR543

* Hardware Implementation 1108 HID0 or SPR1008
Register 0

* Hardware Implementation 1109 HID1 or SPR1009
Register 1

* Hardware Implementation 1110 HID2 or IABR or SPR1010
Register 2

* Hardware Implementation 1113 HID5 or DABR or SPR1013
Register 5

* Hardware Implementation 1123 HID15 or PIR or SPR1023
Register 15

Vector Registers 0-31 1124-1155 vr0-vr31

The 64-bit PowerPC processor family defines the address class codes described in the following table:

Code Value Meaning

ADDR_none 0 No class specified

49

Chapter 4. Object Files

4.1. ELF Header

For file identification in e_ident, the 64-bit PowerPC processor family requires the values shown below:

e_ident[EI_CLASS] ELFCLASS64 For all 64-bit implementations.
e_ident[EI_DATA] ELFDATA2MSB For all big-endian implementations.
e_ident[EI_DATA] ELFDATA2LSB For all little-endian implementations.

The ELF header’s e_flags member holds bit flags associated with the file. Since the 64-bit PowerPC
processor family defines no flags, this member contains zero.

Processor identification resides in the ELF header’s e_machine member, and must have the value 21,
defined as the name EM_PPC64.

The e_entry field in the ELF header holds the address of a function descriptor. See Function Descriptors
in chapter 3. This function descriptor supplies both the address of the function entry point and the initial
value of the TOC pointer register.

4.2. Special Sections

Various sections hold program and control information. The sections listed in the following table are
used by the system and have the types and attributes shown.

Name Type Attributes

.glink SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.toc SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.tocbss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.plt SHT_NOBITS SHF_ALLOC + SHF_WRITE

Note: The .plt section on the 64-bit PowerPC is of type SHT_NOBITS, not SHT_PROGBITS as on
most other processors.

Special sections are described below.

Name Description

.glink This section may be used to hold the global linkage table which

50

Chapter 4. Object Files

aids the procedure linkage table. See Procedure Linkage Table
in Chapter 5 for more information.

.got This section may be used to hold the Global Offset Table, or
GOT. See The Toc Section and Coding Examples in Chapter 3
and Global Offset Table in Chapter 5 for more information.

.toc This section may be used to hold the initialized Table of
Contents, or TOC. See TOC, below, The Toc Section and Coding
examples in Chapter 3 and Global Offset Table in Chapter 5
for more information.

.tocbss This section may be used to hold the uninitialized portions
of the TOC. This data may also be stored as zero-initialized
data in a .toc section.

.plt This section holds the procedure linkage table. See Procedure
Linkage Table in Chapter 5 for more information.

Note: Tools which support this ABI are not required to use these sections precisely as defined here,
and indeed are not required to use them at all. The true use of a section is defined by the relocation
information and by the code which refers to it. However, if tools use these sections, they are required
to give them the types and attributes specified in the above table.

4.3. TOC

The Table of Contents, or TOC, is part of the data segment of an executable program.

This sections describes a typical layout of the TOC in an executable file or shared object. Particular tools
need not follow this layout as specified here.

The TOC typically contains data items within the .got, .toc and .tocbss sections, which can be addressed
with 16-bit signed offsets from the TOC base. The TOC base is typically the first address in the TOC
plus 0x8000, thus permitting a full 64 Kbyte TOC. The .got section is typically created by the link editor
based on @got relocations. The .toc and .tocbss sections are typically included from relocatable object
files referenced during the link.

The TOC may straddle the boundary between initialized and uninitialized data in the data segment. The
usual order of sections in the data segment, some of which may be empty, is:

.data

.got

.toc

.tocbss

51

Chapter 4. Object Files

.plt

The link editor may create multiple TOC sections, as specified in Section 3.5.2. In such a case, the .got
and .toc sections will be repeated as necessary, possibly renamed to preserve unique section names. Any
occurrence of .tocbss in a TOC section other than the last one will be converted into a .toc section
initialized to contain zero bytes.

Compilers may generate "short-form," one-instruction references for all data items that are in the TOC
section for the object file being compiled. Such references are relative to the TOC pointer register, r2,
which always holds the base of the TOC section for the object file.

In a shared object, only data items with local (non-global) scope may be addressed via the TOC pointer.
Global data items must be addressed via the GOT, even if they appear in a .toc or .tocbss section.

A compiler which places some data items in the TOC must provide an option to avoid doing so in a
particular compilation.

4.4. Symbol Table

4.4.1. Symbol Values

If an executable file contains a reference to a function defined in one of its associated shared objects, the
symbol table section for the file will contain an entry for that symbol. The st_shndx member of that
symbol table entry contains SHN_UNDEF. This informs the dynamic linker that the symbol definition
for that function is not contained in the executable file itself. If that symbol has been allocated a
procedure linkage table entry in the executable file, and the st_value member for that symbol table entry
is nonzero, the value is the virtual address of the function descriptor provided by that procedure linkage
table entry. Otherwise, the st_value member contains zero. This procedure linkage table entry address is
used by the dynamic linker in resolving references to the address of the function. See Section 5.2.3 for
details.

4.5. Relocation

52

Chapter 4. Object Files

4.5.1. Relocation Types

Relocation entries describe how to alter the instruction and data relocation fields shown below. Bit
numbers appear in the lower box corners; little-endian byte numbers appear in the upper right box
corners; big-endian numbers appear in the upper left box corners.

+-------+-------+-------+-------+-------+-------+-------+-------+
|0 7|1 6|2 5|3 4|4 3|5 2|6 1|7 0|
| doubleword64 |
|0 63|
+---+

+-------+-------+-------+-------+
|0 3|1 2|2 1|3 0|
| word32 |
|0 31|
+-------------------------------+

+-------+-------+-------+--+----+
0 3	1 2	2 1	3	0
word30				
0 29	3031			
+--------------------------+----+

+----+--+-------+-------+--+----+
0	3	1 2	2 1	3	0
	low24				
0 5	6 29	3031			
+----+---------------------+----+

+-------+-+--+--+-------+--+----+
0 3	1		2	2 1	3	0
			low14			
0	10	15	16 29	3031		
+---------+--+--+----------+----+

+-------+-------+
|0 1|1 0|
| half16 |
|0 15|
+---------------+

+-------+------+--+
0 1	1	0
half16ds		
0 13	15	
+--------------+--+

doubleword64 This specifies a 64-bit field occupying 8 bytes, the
alignment of which is 8 bytes unless otherwise
specified.

53

Chapter 4. Object Files

word32 This specifies a 32-bit field occupying 4 bytes, the
alignment of which is 4 bytes unless otherwise
specified.

word30 This specifies a 30-bit field contained within bits
0-29 of a word with 4-byte alignment. The two least
significant bits of the word are unchanged.

low24 This specifies a 24-bit field contained within a word
with 4-byte alignment. The six most significant and
the two least significant bits of the word are ignored
and unchanged (for example, "Branch" instruction).

low14 This specifies a 14-bit field contained within a word
with 4-byte alignment, comprising a conditional branch
instruction. The 14-bit relative displacement in bits
16-29, and possibly the "branch prediction bit" (bit
10), are altered; all other bits remain unchanged.

half16 This specifies a 16-bit field occupying 2 bytes with
2-byte alignment (for example, the immediate field of
an "Add Immediate" instruction).

half16ds Similar to half16, but really just 14 bits since the
two least significant bits must be zero, and are not really
part of the field. (Used by for example the ldu instruction.)

Calculations in the relocation table assume the actions are transforming a relocatable file into either an
executable or a shared object file. Conceptually, the link editor merges one or more relocatable files to
form the output. It first determines how to combine and locate the input files, next it updates the symbol
values, and then it performs relocations.

Some relocations use high adjusted values. These are the most significant bits, adjusted so that adding
the low 16 bits will perform the correct calculation of the address accounting for signed arithmetic. This
is to support using the low 16 bits as a signed offset when loading the value. For example, a value could
be loaded from an absolute 64 bit address SYM as follows:

lis r3,SYM@highesta
ori r3,SYM@highera
sldi r3,r3,32
oris r3,r3,SYM@ha
ld r4,SYM@l(r3)

The adjusted forms mean that this will work correctly even if SYM@l is negative when interpreted as a
signed 16 bit number. Compare this to building the same 64 bit address using ori, in which case the
adjusted forms are not used:

lis r3,SYM@highest
ori r3,SYM@higher

54

Chapter 4. Object Files

sldi r3,r3,32
oris r3,r3,SYM@h
ori r3,r3,SYM@l
ld r4,0(r3)

These code samples are not meant to encourage people to write code which builds absolute 64 bit
addresses in this manner. It is normally better to use position independent code. However, this ABI does
make this usage possible when it is required.

Relocations applied to executable or shared object files are similar and accomplish the same result. The
following notations are used in the relocation table:

A Represents the addend used to compute the value of the
relocatable field.

B Represents the base address at which a shared object has been
loaded into memory during execution. Generally, a shared object
file is built with a 0 base virtual address, but the execution
address will be different. See Program Header in the System V
ABI for more information about the base address.

G Represents the offset into the global offset table, relative to
the TOC base, at which the address of the relocation entry’s symbol
plus addend will reside during execution. See Section 3.5
and Section 5.2.2 for more information.

L Represents the section offset or address of the procedure linkage
table entry for the symbol plus addend. A procedure linkage table
entry redirects a function call to the proper destination. The
link editor builds the initial procedure linkage table, and the
dynamic linker modifies the entries during execution. See
Section 5.2.4 for more information.

M Similar to G, except that the address which is stored may be the
address of the procedure linkage table entry for the symbol.

P Represents the place (section offset or address) of the storage
unit being relocated (computed using r_offset).

R Represents the offset of the symbol within the section in which
the symbol is defined (its section-relative address).

S Represents the value of the symbol whose index resides in the
relocation entry.

The following notations are used for relocations used with thread-local symbols.

@dtpmod
Computes the load module index of the load module that contains
the definition of sym. The addend, if present, is ignored.

55

Chapter 4. Object Files

@dtprel
Computes a dtv-relative displacement, the difference between the
value of S + A and the base address of the thread-local storage
block that contains the definition of the symbol, minus 0x8000.

@tprel
Computes a tp-relative displacement, the difference between the
value of S + A and the value of the thread pointer (r13).

@got@tlsgd
Allocates two contiguous entries in the GOT to hold a tls_index
structure, with values @dtpmod and @dtprel, and computes the
offset to the first entry relative to the TOC base (r2).

@got@tlsld
Allocates two contiguous entries in the GOT to hold a tls_index
structure, with values @dtpmod and zero, and computes the offset
to the first entry relative to the TOC base (r2).

@got@dtprel
Allocates an entry in the GOT with value @dtprel, and computes
the offset to the entry relative to the TOC base (r2).

@got@tprel
Allocates an entry in the GOT with value @tprel, and computes the
offset to the entry relative to the TOC base (r2).

Relocation entries apply to halfwords, words, or doublewords. In all cases, the r_offset value designates
the offset or virtual address of the first byte of the affected storage unit. The relocation type specifies
which bits to change and how to calculate their values. The 64-bit PowerPC family uses only the
Elf32_Rela relocation entries with explicit addends. For the relocation entries, the r_addend member
serves as the relocation addend. In all cases, the offset, addend, and the computed result use the byte
order specified in the ELF header.

The following general rules apply to the interpretation of the relocation types in the relocation table:

• "+" and "-" denote 64-bit modulus addition and subtraction, respectively. ">>" denotes arithmetic
right-shifting (shifting with sign copying) of the value of the left operand by the number of bits given
by the right operand.

• For relocation types in which the names contain "32", the upper 32 bits of the value computed must be
the same. For relocation types in which the names contain "14" or "16," the upper 49 bits of the value
computed before shifting must all be the same. For relocation types whose names contain "24," the
upper 39 bits of the value computed before shifting must all be the same. For relocation types whose
names contain "14" or "24," the low 2 bits of the value computed before shifting must all be zero.

• #lo(value) denotes the least significant 16 bits of the indicated value:

#lo(x) = (x & 0xffff).

• #hi(value) denotes bits 16 through 31 of the indicated value:

56

Chapter 4. Object Files

#hi(x) = ((x >> 16) & 0xffff).

• #ha(value) denotes the high adjusted value: bits 16 through 31 of the indicated value, compensating
for #lo() being treated as a signed number:

#ha(x) = (((x >> 16) + ((x & 0x8000) ? 1 : 0)) & 0xffff)

• #higher(value) denotes bits 32 through 47 of the indicated value:

#higher(x) = ((x >> 32) & 0xffff)

• #highera(value) denotes bits 32 through 47 of the indicated value, compensating for #lo() being treated
as a signed number:

#highera(x) =
(((x >> 32) + (((x & 0xffff8000) == 0xffff8000) ? 1 : 0)) & 0xffff)

• #highest(value) denotes bits 48 through 63 of the indicated value:

#highest(x) = ((x >> 48) & 0xffff)

• #highesta(value) denotes bits 48 through 63 of the indicated value, compensating for #lo being treated
as a signed number:

#highesta(value) =
(((x >> 48) + (((x & 0xffffffff8000) == 0xffffffff8000) ? 1 : 0)) & 0xffff)

• Reference in a calculation to the value G implicitly creates a GOT entry for the indicated symbol.

• .TOC. refers to the TOC base of the TOC section for the object being relocated. See Section 4.3 for
additional information. The dynamic linker does not have this information, and hence relocation types
that refer to .TOC. may only appear in relocatable object files, not in executables or shared objects.

Figure 4-1. Relocation Table

Name Value Field Calculation

R_PPC64_NONE 0 none none
R_PPC64_ADDR32 1 word32* S + A
R_PPC64_ADDR24 2 low24* (S + A) >> 2
R_PPC64_ADDR16 3 half16* S + A
R_PPC64_ADDR16_LO 4 half16 #lo(S + A)
R_PPC64_ADDR16_HI 5 half16 #hi(S + A)
R_PPC64_ADDR16_HA 6 half16 #ha(S + A)
R_PPC64_ADDR14 7 low14* (S + A) >> 2
R_PPC64_ADDR14_BRTAKEN 8 low14* (S + A) >> 2
R_PPC64_ADDR14_BRNTAKEN 9 low14* (S + A) >> 2
R_PPC64_REL24 10 low24* (S + A - P) >> 2
R_PPC64_REL14 11 low14* (S + A - P) >> 2
R_PPC64_REL14_BRTAKEN 12 low14* (S + A - P) >> 2
R_PPC64_REL14_BRNTAKEN 13 low14* (S + A - P) >> 2
R_PPC64_GOT16 14 half16* G
R_PPC64_GOT16_LO 15 half16 #lo(G)
R_PPC64_GOT16_HI 16 half16 #hi(G)
R_PPC64_GOT16_HA 17 half16 #ha(G)
R_PPC64_COPY 19 none none
R_PPC64_GLOB_DAT 20 doubleword64 S + A
R_PPC64_JMP_SLOT 21 none see below

57

Chapter 4. Object Files

R_PPC64_RELATIVE 22 doubleword64 B + A
R_PPC64_UADDR32 24 word32* S + A
R_PPC64_UADDR16 25 half16* S + A
R_PPC64_REL32 26 word32* S + A - P
R_PPC64_PLT32 27 word32* L
R_PPC64_PLTREL32 28 word32* L - P
R_PPC64_PLT16_LO 29 half16 #lo(L)
R_PPC64_PLT16_HI 30 half16 #hi(L)
R_PPC64_PLT16_HA 31 half16 #ha(L)
R_PPC64_SECTOFF 33 half16* R + A
R_PPC64_SECTOFF_LO 34 half16 #lo(R + A)
R_PPC64_SECTOFF_HI 35 half16 #hi(R + A)
R_PPC64_SECTOFF_HA 36 half16 #ha(R + A)
R_PPC64_ADDR30 37 word30 (S + A - P) >> 2
R_PPC64_ADDR64 38 doubleword64 S + A
R_PPC64_ADDR16_HIGHER 39 half16 #higher(S + A)
R_PPC64_ADDR16_HIGHERA 40 half16 #highera(S + A)
R_PPC64_ADDR16_HIGHEST 41 half16 #highest(S + A)
R_PPC64_ADDR16_HIGHESTA 42 half16 #highesta(S + A)
R_PPC64_UADDR64 43 doubleword64 S + A
R_PPC64_REL64 44 doubleword64 S + A - P
R_PPC64_PLT64 45 doubleword64 L
R_PPC64_PLTREL64 46 doubleword64 L - P
R_PPC64_TOC16 47 half16* S + A - .TOC.
R_PPC64_TOC16_LO 48 half16 #lo(S + A - .TOC.)
R_PPC64_TOC16_HI 49 half16 #hi(S + A - .TOC.)
R_PPC64_TOC16_HA 50 half16 #ha(S + A - .TOC.)
R_PPC64_TOC 51 doubleword64 .TOC.
R_PPC64_PLTGOT16 52 half16* M
R_PPC64_PLTGOT16_LO 53 half16 #lo(M)
R_PPC64_PLTGOT16_HI 54 half16 #hi(M)
R_PPC64_PLTGOT16_HA 55 half16 #ha(M)
R_PPC64_ADDR16_DS 56 half16ds* (S + A) >> 2
R_PPC64_ADDR16_LO_DS 57 half16ds #lo(S + A) >> 2
R_PPC64_GOT16_DS 58 half16ds* G >> 2
R_PPC64_GOT16_LO_DS 59 half16ds #lo(G) >> 2
R_PPC64_PLT16_LO_DS 60 half16ds #lo(L) >> 2
R_PPC64_SECTOFF_DS 61 half16ds* (R + A) >> 2
R_PPC64_SECTOFF_LO_DS 62 half16ds #lo(R + A) >> 2
R_PPC64_TOC16_DS 63 half16ds* (S + A - .TOC.) >> 2
R_PPC64_TOC16_LO_DS 64 half16ds #lo(S + A - .TOC.) >> 2
R_PPC64_PLTGOT16_DS 65 half16ds* M >> 2
R_PPC64_PLTGOT16_LO_DS 66 half16ds #lo(M) >> 2
R_PPC64_TLS 67 none none
R_PPC64_DTPMOD64 68 doubleword64 @dtpmod
R_PPC64_TPREL16 69 half16* @tprel
R_PPC64_TPREL16_LO 60 half16 #lo(@tprel)
R_PPC64_TPREL16_HI 71 half16 #hi(@tprel)
R_PPC64_TPREL16_HA 72 half16 #ha(@tprel)
R_PPC64_TPREL64 73 doubleword64 @tprel
R_PPC64_DTPREL16 74 half16* @dtprel
R_PPC64_DTPREL16_LO 75 half16 #lo(@dtprel)
R_PPC64_DTPREL16_HI 76 half16 #hi(@dtprel)

58

Chapter 4. Object Files

R_PPC64_DTPREL16_HA 77 half16 #ha(@dtprel)
R_PPC64_DTPREL64 78 doubleword64 @dtprel
R_PPC64_GOT_TLSGD16 79 half16* @got@tlsgd
R_PPC64_GOT_TLSGD16_LO 80 half16 #lo(@got@tlsgd)
R_PPC64_GOT_TLSGD16_HI 81 half16 #hi(@got@tlsgd)
R_PPC64_GOT_TLSGD16_HA 82 half16 #ha(@got@tlsgd)
R_PPC64_GOT_TLSLD16 83 half16* @got@tlsld
R_PPC64_GOT_TLSLD16_LO 84 half16 #lo(@got@tlsld)
R_PPC64_GOT_TLSLD16_HI 85 half16 #hi(@got@tlsld)
R_PPC64_GOT_TLSLD16_HA 86 half16 #ha(@got@tlsld)
R_PPC64_GOT_TPREL16_DS 87 half16ds* @got@tprel
R_PPC64_GOT_TPREL16_LO_DS 88 half16ds #lo(@got@tprel)
R_PPC64_GOT_TPREL16_HI 89 half16 #hi(@got@tprel)
R_PPC64_GOT_TPREL16_HA 90 half16 #ha(@got@tprel)
R_PPC64_GOT_DTPREL16_DS 91 half16ds* @got@dtprel
R_PPC64_GOT_DTPREL16_LO_DS92 half16ds #lo(@got@dtprel)
R_PPC64_GOT_DTPREL16_HI 93 half16 #hi(@got@dtprel)
R_PPC64_GOT_DTPREL16_HA 94 half16 #ha(@got@dtprel)
R_PPC64_TPREL16_DS 95 half16ds* @tprel
R_PPC64_TPREL16_LO_DS 96 half16ds #lo(@tprel)
R_PPC64_TPREL16_HIGHER 97 half16 #higher(@tprel)
R_PPC64_TPREL16_HIGHERA 98 half16 #highera(@tprel)
R_PPC64_TPREL16_HIGHEST 99 half16 #highest(@tprel)
R_PPC64_TPREL16_HIGHESTA 100 half16 #highesta(@tprel)
R_PPC64_DTPREL16_DS 101 half16ds* @dtprel
R_PPC64_DTPREL16_LO_DS 102 half16ds #lo(@dtprel)
R_PPC64_DTPREL16_HIGHER 103 half16 #higher(@dtprel)
R_PPC64_DTPREL16_HIGHERA 104 half16 #highera(@dtprel)
R_PPC64_DTPREL16_HIGHEST 105 half16 #highest(@dtprel)
R_PPC64_DTPREL16_HIGHESTA 106 half16 #highesta(@dtprel)

Note: Relocation values 18, 23 and 32 are not used. This is to maintain a correspondence to the
relocation values used by the 32-bit PowerPC ELF ABI.

The relocation types whose Field column entry contains an asterisk (*) are subject to failure if the value
computed does not fit in the allocated bits.

The relocation types in which the names include _BRTAKEN or _BRNTAKEN specify whether the
branch prediction bit (bit 10) should indicate that the branch will be taken or not taken, respectively. For
an unconditional branch, the branch prediction bit must be 0.

Relocations 56-66 are to be used for instructions with a DS offset field (ld, ldu, lwa, std, stdu). ABI
conformant tools should give an error for attempts to relocate an address to a value that is not divisible
by 4.

Relocation types with special semantics are described below.

59

Chapter 4. Object Files

R_PPC64_GOT16*

These relocation types resemble the corresponding R_PPC64_ADDR16* types, except that they
refer to the address of the symbol’s global offset table entry and additionally instruct the link editor
to build a global offset table.

R_PPC64_PLTGOT16*

These relocation types resemble the corresponding R_PPC64_GOT16* types, except that the
address stored in the global offset table entry may be the address of an entry in the procedure
linkage table. If the link editor can determine the actual value of the symbol, it may store that in the
corresponding GOT entry. Otherwise, it may create an entry in the procedure linkage table, and
store that address in the GOT entry; this permits lazy resolution of function symbols at run time.
Otherwise, the link editor may generate a R_PPC64_GLOB_DAT relocation as usual.

R_PPC64_COPY

The link editor creates this relocation type for dynamic linking. Its offset member refers to a
location in a writable segment. The symbol table index specifies a symbol that should exist both in
the current object file and in a shared object. During execution, the dynamic linker copies data
associated with the shared object’s symbol to the location specified by the offset.

R_PPC64_GLOB_DAT

This relocation type resembles R_PPC64_ADDR64, except that it sets a global offset table entry to
the address of the specified symbol. This special relocation type allows one to determine the
correspondence between symbols and global offset table entries.

R_PPC64_JMP_SLOT

The link editor creates this relocation type for dynamic linking. Its offset member gives the location
of a procedure linkage table entry. The dynamic linker modifies the procedure linkage table entry to
transfer control to the designated symbol’s address (see Section 5.2.4).

R_PPC64_RELATIVE

The link editor creates this relocation type for dynamic linking. Its offset member gives a location
within a shared object that contains a value representing a relative address. The dynamic linker
computes the corresponding virtual address by adding the virtual address at which the shared object
was loaded to the relative address. Relocation entries for this type must specify 0 for the symbol
table index.

R_PPC64_UADDR*

These relocation types are the same as the corresponding R_PPC64_ADDR* types, except that the
datum to be relocated is allowed to be unaligned.

60

Chapter 5. Program Loading and Dynamic
Linking

5.1. Program Loading

As the system creates or augments a process image, it logically copies a file’s segment to a virtual
memory segment. When--and if--the system physically reads the file depends on the program’s execution
behavior, system load, and so on. A process does not require a physical page unless it references the
logical page during execution, and processes commonly leave many pages unreferenced. Therefore,
delaying physical reads frequently obviates them, improving system performance. To obtain this
efficiency in practice, executable and shared object files must have segment images whose offsets and
virtual addresses are congruent, modulo the page size.

Virtual addresses and file offsets for the 64-bit PowerPC processor family segments are congruent
modulo 64 Kbytes (0x10000) or larger powers of 2. Although 4096 bytes is currently the 64-bit PowerPC
page size, this allows files to be suitable for paging even if implementations appear with larger page
sizes. The value of the p_align member of each program header in a shared object file must be 0x10000.

It is normally desirable to put segments with different characteristics in separate 256 Mbyte portions of
the address space, to give the operating system full paging flexibility in the 64-bit address space.

Here is an example of an executable file assuming an executable program linked with a base address of
0x10000000.

File Offset Virtual Address

0
ELF header
Program header table
Other information

0x100 0x10000100
Text segment
. . .
0x2be00 bytes

0x1002beff
0x2bf00 0x2003bf00

Data segment
. . .
0x4e00 bytes

0x20040cff
0x30d00

Other information

Here are possible corresponding program header segments:

61

Chapter 5. Program Loading and Dynamic Linking

Member Text Data

p_type PT_LOAD PT_LOAD
p_offset 0x100 0x2bf00
p_vaddr 0x10000100 0x2003bf00
p_paddr unspecified unspecified
p_filesz 0x2be00 0x4e00
p_memsz 0x2be00 0x5e24
p_flags PF_R+PF_X PF_R+PF_W
p_align 0x10000 0x10000

Note: The example addresses for the text and data segments are chosen for compatibility with AIX,
and it is suggested, though not required, that tools supporting this ABI use similar addresses.

Although the file offsets and virtual addresses are congruent modulo 64 Kbytes for both text and data, up
to four file pages can hold impure text or data (depending on page size and file system block size).

• The first text page contains the ELF header, the program header table, and other information.

• The last text page may hold a copy of the beginning of data.

• The first data page may have a copy of the end of text.

• The last data page may contain file information not relevant to the running process.

Logically, the system enforces memory permissions as if each segment were complete and separate;
segment addresses are adjusted to ensure that each logical page in the address space has a single set of
permissions. In the example above, the file region holding the end of text and the beginning of data is
mapped twice; at one virtual address for text and at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data, which the system defines to
begin with zero values. Thus if the last data page of a file includes information not in the logical memory
page, the extraneous data must be set to zero, rather than to the unknown contents of the executable file.
"Impurities" in the other three pages are not logically part of the process image; whether the system
expunges them is unspecified. The memory image for the program above is shown here, assuming 4096
(0x1000) byte pages.

Figure 5-1. Virtual Address

Text segment:
0x02000000

Header padding
0x100 bytes

0x02000100
Text segment
...
0x2be00 bytes

0x0202bf00
Data padding

62

Chapter 5. Program Loading and Dynamic Linking

0x100 bytes

Data segment:
0x0203b000

Text padding
0xf00 bytes

0x0203bf00
Data segment
...
0x4e00 bytes

0x02040d00
Uninitialized data
0x1024 bytes

0x02041d24
Page padding
0x2dc zero bytes

One aspect of segment loading differs between executable files and shared objects. Executable file
segments may contain absolute code. For the process to execute correctly, the segments must reside at
the virtual addresses assigned when building the executable file, with the system using the p_vaddr
values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent code. This allows a
segment’s virtual address to change from one process to another, without invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, most systems will maintain the
"relative positions" of the segments. Any use of relative addressing between segments should be
indicated by an appropriate dynamic relocation. If the dynamic linker does not maintain the relative
position of segments at load time, it must be careful in its handling of R_PPC64_RELATIVE relocations,
examining the relative address in order to determine the appropriate base address to use.

The following table shows possible shared object virtual address assignments for several processes,
illustrating constant relative positioning. The table also illustrates the base address computations.

Source Text Data Base Address
File 0x000200 0x02a400
Process 1 0x100200 0x12a400 0x100000
Process 2 0x200200 0x22a400 0x200000
Process 3 0x300200 0x32a400 0x300000
Process 4 0x400200 0x42a400 0x400000

5.1.1. Program Interpreter

The standard program interpreter is /usr/lib/ld.so.1.

63

Chapter 5. Program Loading and Dynamic Linking

5.2. Dynamic Linking

5.2.1. Dynamic Section

Dynamic section entries give information to the dynamic linker. Some of this information is
processor-specific, including the interpretation of some entries in the dynamic structure.

DT_PLTGOT

This entry’s d_ptr member gives the address of the first byte in the procedure linkage table.

DT_JMPREL

As explained in the System V ABI, this entry is associated with a table of relocation entries for the
procedure linkage table. For the 64-bit PowerPC, this entry is mandatory both for executable and
shared object files. Moreover, the relocation table’s entries must have a one-to-one correspondence
with the procedure linkage table. The table of DT_JMPREL relocation entries is wholly contained
within the DT_RELA referenced table. See Section 5.2.4 later in this chapter for more information.

5.2.2. Global Offset Table

Position-independent code cannot, in general, contain absolute virtual addresses. The global offset table,
which is part of the TOC section, holds absolute addresses in private data, thus making the addresses
available without compromising the position-independence and sharability of a program’s text. A
program references its TOC using position-independent addressing and extracts absolute values, thus
redirecting position-independent references to absolute locations.

When the dynamic linker creates memory segments for a loadable object file, it processes the relocation
entries, some of which will be of type R_PPC64_GLOB_DAT, referring to the global offset table within
the TOC. The dynamic linker determines the associated symbol values, calculates their absolute
addresses, and sets the global offset table entries to the proper values. Although the absolute addresses
are unknown when the link editor builds an object file, the dynamic linker knows the addresses of all
memory segments and can thus calculate the absolute addresses of the symbols contained therein.

A global offset table entry provides direct access to the absolute address of a symbol without
compromising position-independence and sharability. Because the executable file and shared objects
have separate global offset tables, a symbol may appear in several tables. The dynamic linker processes
all the global offset table relocations before giving control to any code in the process image, thus
ensuring the absolute addresses are available during execution.

The global offset table is part of the TOC section. Since different functions in a single executable or
shared object may have different TOC sections, the global offset table may also be replicated, in whole

64

Chapter 5. Program Loading and Dynamic Linking

or in part. Each instance of the global offset table will have its own set of relocations. The dynamic linker
need not know about the replication; it simply processes all the relocations it is given.

The dynamic linker may choose different memory segment addresses for the same shared object in
different programs; it may even choose different library addresses for different executions of the same
program. Nonetheless, memory segments do not change addresses once the process image is established.
As long as a process exists, its memory segments reside at fixed virtual addresses.

The global offset table normally resides in the ELF .got section in an executable or shared object.

5.2.3. Function Addresses

References to the address of a function from an executable file and the shared objects associated with it
need to resolve to the same value.

In this ABI, the address of a function is actually the address of a function descriptor. A reference to a
function, other than a function call, will normally load the address of the function descriptor from the
global offset table. The dynamic linker will ensure that for a given function, the same address is used for
all references to the function from any global offset table. Thus, function address comparisons will work
as expected.

When making a call to the function, the code may refer to the procedure linkage table entry, in order to
permit lazy symbol resolution at run time. In order to support correct function address comparisons, the
compiler should be careful to only generate references to the procedure linkage table entry for function
calls. For any other use of a function, the compiler should use the real address.

When using the ELF assembler syntax, this means that the compiler should use the @got syntax, rather
than the @got@plt syntax, if the function address is going to be used without being called.

5.2.4. Procedure Linkage Table

The procedure linkage table may be used to redirect function calls between the executable and a shared
object or between different shared objects. Because all function calls on the 64-bit PowerPC are done via
function descriptors, the procedure linkage table is simply a special case of a function descriptor which is
filled in by the dynamic linker rather than the link editor.

The procedure linkage table is purely an optimization designed to permit lazy symbol resolution at run
time. The link editor may generate R_PPC64_GLOB_DAT relocations for all function descriptors
defined in other shared objects, and avoid generating a procedure linkage table at all.

65

Chapter 5. Program Loading and Dynamic Linking

The procedure linkage table is normally found in the .plt section in an executable or shared object. Its
contents are not initialized in the executable or shared object file. Instead, the link editor simply reserves
space for it, and the dynamic linker initializes it and manages it according to its own, possibly
implementation-dependent needs, subject to the following constraint:

• If the executable or shared object requires N procedure linkage table entries, the link editor shall
reserve 3*(N+1) doublewords (24*(N+1) bytes). These doublewords will be used to hold function
descriptors. When calling function i, the link editor arranges to use the function descriptor at byte 24 *
i. The first procedure linkage table entry is reserved for use by the dynamic linker.

As mentioned before, a relocation table is associated with the procedure linkage table. The DT_JMPREL
entry in the dynamic section gives the location of the first relocation entry. The relocation table’s entries
parallel the procedure linkage table entries in a one-to-one correspondence. That is, relocation table entry
1 applies to procedure linkage table entry 1, and so on. The relocation type for each entry shall be
R_PPC64_JMP_SLOT, the relocation offset shall specify the address of the first byte of the associated
procedure linkage table entry, and the symbol table index shall reference the appropriate symbol.

The dynamic linker will locate the symbol referenced by the R_PPC64_JMP_SLOT relocation. The
value of the symbol will be the address of the function descriptor. The dynamic linker will copy these 24
bytes into the procedure linkage table entry.

The dynamic linker can resolve the procedure linkage table relocations lazily, resolving them only when
they are needed. This can speed up program startup time.

The following code shows how the dynamic linker might initialize the procedure linkage table in order to
provide lazy resolution:

.GLINK:

.GLINK0:
ld r2, 40(r1)
addis r12,r2,.PLT0@toc@ha
addi r12,r12,.PLT0@toc@l
ld r11,0(r12)
ld r2, 8(r12)
mtctr r11
ld r11,16(r12)
bctr

.GLINK1:
li r0,0
b .GLINK0

.GLINKi: # i <= 32768
li r0,i - 1
b .GLINK0

.GLINKN: # N > 32768
lis r0,(N - 1) >> 16
ori r0,r0,(N - 1) & 0xffff
b .GLINK0

66

Chapter 5. Program Loading and Dynamic Linking

...

.PLT:

.PLT0:
.quad ld_so_fixup_func
.quad ld_so_toc
.quad ld_so_ident

.PLT1:
.quad .GLINK1
.quad 0
.quad 0
...

.PLTi:
.quad .GLINKi
.quad 0
.quad 0
...

.PLTN:
.quad .GLINKN
.quad 0
.quad 0

Following the steps below, the dynamic linker and the program cooperate to resolve symbolic references
through the procedure linkage table. Again, the steps described below are for explanation only. The
precise execution-time behavior of the dynamic linker is not specified.

1. As shown above, each procedure linkage table entry I, as initialized by the link editor, transfers
control to the corresponding glink entry I at .GLINKI. The instructions at .GLINKI loads a
relocation index into r0 and branches to the common .GLINK0 code, the first entry in the GLINK
table. For example, assume the program calls NAME, which uses the function descriptor at the label
.PLTi. The function descriptor causes the program to branch to .GLINKi which loads i - 1 into r0
and branches to .GLINK0.

2. .GLINK0 loads three values from the PLT Reserve area allocated by the link editor and initialized
by the dynamic linker. The first doubleword is the dynamic linker’s lazy binding entry point. The
second doubleword is the dynamic linker’s own TOC anchor value. The third doubleword is an
8-byte identifier unique to the calling module which must be placed into r11 (normally the static
chain), so that the dynamic linker can identify the object from which the call originated, and thereby
located that object’s relocation table. .GLINK0 then calls into the dynamic linker with the PLT index
copied into r0 and the identifying information copied into r11.

3. The dynamic linker finds relocation entry i corresponding to the index in r0. It will have type
R_PPC_JMP_SLOT, its offset will specify the address of .PLTi, and its symbol table index will
reference NAME.

4. Knowing this, the dynamic linker finds the symbol’s "real" value. It then copies the function
descriptor into the code at .PLTi.

5. Subsequent executions of the procedure linkage table entry will transfer control directly to the
function via the function descriptor at .PLTi, without invoking the dynamic linker.

67

Chapter 5. Program Loading and Dynamic Linking

The LD_BIND_NOW environment variable can change dynamic linking behavior. If its value is
non-null, the dynamic linker resolves the function call binding at load time, before transferring control to
the program. That is, the dynamic linker processes relocation entries of type R_PPC_JMP_SLOT during
process initialization. Otherwise, the dynamic linker evaluates procedure linkage table entries lazily,
delaying symbol resolution and relocation until the first execution of a table entry.

Lazy binding generally improves overall application performance because unused symbols do not incur
the dynamic linking overhead. Nevertheless, two situations make lazy binding undesirable for some
applications:

• The initial reference to a shared object function takes longer than subsequent calls because the
dynamic linker intercepts the call to resolve the symbol, and some applications cannot tolerate this
unpredictability.

• If an error occurs and the dynamic linker cannot resolve the symbol, the dynamic linker will terminate
the program. Under lazy binding, this might occur at arbitrary times. Once again, some applications
cannot tolerate this unpredictability. By turning off lazy binding, the dynamic linker forces the failure
to occur during process initialization, before the application receives control.

68

Chapter 6. Libraries

This document does not specify any library interfaces.

69

